05;07

Исследование методом комбинационного рассеяния света тонких пленок магнетита на окисленной поверхности кремния

© В.А. Викулов, В.В. Балашев, Т.А. Писаренко, А.А. Дмитриев, В.В. Коробцов

Институт автоматики и процессов управления ДО РАН, Владивосток Школа естественных наук Дальневосточного федерального университета, Владивосток E-mail: vikulov@mail.dvo.ru

Поступило в Редакцию 14 марта 2012 г.

Методом комбинационного рассеяния света исследованы поликристаллические пленки магнетита, сформированные реактивным осаждением Fe в атмосфере кислорода на подложке Si(001), покрытой тонким (1.4 nm) и толстым (1200 nm) слоем SiO₂. Установлено, что в пленках Fe₃O₄, выращенных на толстом слое SiO₂, происходит образование фазы α -Fe₂O₃ за счет нагрева под действием лазерного излучения. Показано, что образование фазы α -Fe₂O₃ зависит от толщины слоя оксида кремния.

Одним из информативных методов исследования структурнофазового состава материалов является спектроскопия комбинационного рассеяния света (КРС). Однако при проведении экспериментов КРС следует учитывать влияние плотности мощности лазерного излучения, так как эта величина может приводить к деградации образцов [1]. В полной мере это относится к магнетиту (Fe₃O₄), содержащему дивалентное железо, поскольку он легко окисляется при повышенных температурах в окружающей атмосфере. В работе (2) установлено, что нагрев лазерным излучением объемных образцов Fe₃O₄ приводит к образованию в них других фаз оксида железа (маггемит-у-Fe₃O₄ и гематит-*а*-Fe₂O₃). При этом наблюдалось существенное смещение характеристических пиков в сторону меньших частот, затрудняющее идентификацию спектров КРС. В данной работе мы показываем, что такие ее эффекты могут проявляться и при измерениях КРС тонких пленок Fe₃O₄, сформированных на окисленной поверхности кремния. Нами установлено, что для фазового превращения магнетита имеет

87

значение не только плотность мощности лазерного излучения, но и толщина слоя оксида кремния и его коэффициент теплопроводности.

В качестве подложек использовались пластины кремния *n*-типа $(4.5 \Omega \cdot \text{сm})$ с ориентацией (001), на которых термическим окислением был выращен толстый (1200 nm) слой SiO₂. Тонкий слой (1.4 nm) SiO₂ был получен путем удаления исходного слоя SiO₂ с половины подложки и последующей химической обработки в азотной кислоте (HNO₃) в течение 5 min. Формирование пленок оксида железа проводилось одновременно на обеих частях подложки методом реактивного осаждения Fe в атмосфере O₂ в сверхвысоковакуумной установке при постоянном давлении кислорода ($1.0 \cdot 10^{-6}$ Torr) и температуре подложки (300° C). В ходе экспериментов были получены две серии образцов на тонком (серия *1*) и толстом (серия *2*) слое SiO₂, с толщинами оксида железа 33, 66 и 96 nm. Детально условия эксперимента описаны в работе [3].

В процессе роста пленок наблюдались картины дифракции быстрых электронов (ДБЭ), которые для обеих серий изменялись одинаковым образом. На рис. 1, *а* представлена экспериментальная картина ДБЭ, типичная для образцов обеих серий. На картинах ДБЭ наблюдались кольца Дебая, характерные для текстурированной поликристаллической пленки. Расчеты показали что радиусы дифракционных колец согласуются с обратными значениями межплоскостных расстояний для решетки шпинели с [100]-текстурой [3]. С ростом толщины пленки резкость колец увеличивалась, что указывает на увеличение размеров кристаллитов Этот результат согласуется с данными атомной силовой микроскопии (AC), полученными на микроскопе SOLVER-P47 (рис. 1, *b*). Для обеих серий образцов поверхность представляла собой массив кристаллитов. С ростом толщины пленки от 33 до 96 nm средний размер кристаллитов увеличивался от 15 до 22 nm.

Наблюдаемые картины ДБЭ не исключают присутствия в сформированных пленках другой фазы оксида железа — магтемита (γ -Fe₂O₃) из-за близких значений постоянных решеток (0.834 nm для γ -Fe₂O₃ и 0.839 nm для Fe₃O₄ [4]). С другой стороны, указанные фазы оксида железа хорошо различимы по спектрам КРС. Согласно работе [5], монокристаллический Fe₃O₄ характеризуется четырьмя активными рамановскими модами: A_{1g} ($\omega = 669 \text{ cm}^{-1}$), E_g ($\omega = 410 \text{ cm}^{-1}$) и $2T_{2g}$ (ω ($T_{2g}^1 = 193 \text{ cm}^{-1}$), ω ($T_{2g}^2 = 540 \text{ cm}^{-1}$) и ω ($T_{2g}^3 = 300 \text{ cm}^{-1}$)), а фаза γ -Fe₂O₃ — модами на частотах 350, 500 и 700 cm⁻¹ [6]. Поэтому дальнейшая идентификация фазового состава сформированных пленок

Рис. 1. *а* — типичная картина ДБЭ; *b* — АСМ-изображение поверхности пленки Fe₃O₄.

была проведена с помощью КРС. Спектры КРС регистрировались на установке NTGRA Spectra при возбуждении на длине волны 488 nm $\rm Ar^+$ -лазером в диапазоне частот 200–800 cm^{-1}. Мощность лазерного из-

Рис. 2. Спектры КРС от пленок Fe₃O₄, сформированных на тонком (*a*) и толстом (*b*) слое SiO₂ с толщинами: I - 33 nm, 2 - 66 nm и 3 - 96 nm.

лучения, достигающего поверхности исследуемого образца, изменялась с помощью нейтрального фильтра переменной плотности. Диаметр лазерного пятна на образце составлял $0.5\,\mu$ m, время экспозиции 10×30 s. Все измерения проводились в окружающей атмосфере при комнатной температуре.

На рис. 2 представлены спектры КРС пленок оксида железа различной толщины для образцов серии 1 (рис. 2, *a*) и серии 2 (рис. 2, *b*), полученные при мощности лазерного излучения P = 8 mW. На спектрах образцов серии 1 присутствуют пики на частотах 303 и 520 cm⁻¹, относящиеся к кремниевой положке, и интенсивный пик на частоте 669 cm⁻¹, являющийся характеристическим для Fe₃O₄. На рис. 2, *a* видно, что увеличение толщины пленки Fe₃O₄ приводит к росту интенсивности пика A_{1g} и появлению плеча у кремниевого пика при $\omega = 540$ cm⁻¹. Моды магнетита E_g , T_{2g}^1 , T_{2g}^3 не проявлялись из-за слабой

интенсивности и суперпозиции с характеристическими модами кремния. Моды, соответствующие фазе γ -Fe₂O₃, также не проявлялись.

Для образцов серии 2 лишь для самой тонкой пленки спектр КРС соответствует магнетиту (рис. 2, *b*), тогда как спектры пленок толщиной 66 и 96 nm имеют характерный для фазы α -Fe₂O₃ набор интенсивных пиков на частотах 217, 280 и 392 cm⁻¹ [7], положения которых смещены в сторону меньших волновых чисел. Моды фазы γ -Fe₂O₃ отсутствовали. Учитывая то, что пленки оксида железа на тонком и толстом слое SiO₂ формировались одновременно, картины ДБЭ образцов обеих серий не отличались и были расшифрованы как магнетит, то причиной образования фазы α -Fe₂O₃ является не изменение механизма роста, а нагрев пленок лазерным излучением выше 400°C [8]. В этом случае толстый слой SiO₂ служит препятствием для теплоотвода вследствие низкого значения коэффициента теплопроводности SiO₂(1.4W · m⁻¹ · K⁻¹) [9]. Напротив, в пленках Fe₃O₄, сформированных на тонком слое SiO₂

Рис. 3. Спектры КРС от пленки Fe_3O_4 толщиной 66 nm на толстом слое SiO_2 : влияние мощности зондирующего излучения: 1 - 0.8 mW; 2 - 8 mW и 3 -повторная запись спектра в тт. 2 с мощностью излучения 0.8 mW.

такая температура не достигается из-за незначительного теплового сопротивления интерфейса SiO₂/Si и высокого значения коэффициента теплопроводности Si(150W \cdot m⁻¹ \cdot K⁻¹) [9]. Возможной причиной ослабления температурного эффекта в образце с толщиной 33 nm серии 2 может служить поверхностная несплошность пленок Fe₃O₄ (рис. 1, *b*).

Проверка предположения о нагреве пленок Fe₃O₄ лазерным излучением проводилась на образце серии 2 с толщиной слоя оксида железа 66 nm путем снятия спектров КРС на одном и том же участке образца при мощностях лазерного излучения 0.8 и 8 mW (рис. 3). На рисунке видно, что при возбуждении мощностью 0.8 mW (рис. 3, кривая 1) спектр КРС практически совпадает со спектром пленки с $d_{Fe_3O_4} = 66$ nm серии 1 (рис. 2, *a*, кривая 2). Регистрация спектров КРС при мощности излучения 8 mW приводит к появлению интенсивных пиков α -Fe₂O₃ на частотах 216, 281 и 392 сm⁻¹ (рис. 3, кривая 2). Наблюдаемое сме-

щение положения максимумов (~ 10 сm⁻¹) характеристических пиков α -Fe₂O₃ также вызвано нагревом пленок в процессе измерения спектров КРС [10]. Оценка изменения температуры поверхности, проведенная с помощью формулы из работы [11] $T = F_0 d \sqrt{\pi}/2K$, где F_0 — плотность потока излучения, d — радиус пучка, K — коэффициент теплопроводности, показала, что при мощности лазерного излучения P = 8 mW и радиусе пучка $0.25 \,\mu\text{m}$ температура на поверхности Si в центре облучаемой области повышается на $\approx 60^{\circ}$ С, тогда как на SiO₂ — на $\approx 630^{\circ}$ С, что и является причиной образования фазы α -Fe₂O₃. Повторное измерение спектра при мощности 0.8 mW пики, соответствующие фазе α -Fe₂O₃, оставались, при этом положения максимумов смещались к истинным значениям (рис. 3, кривая 3).

В данной работе методом комбинационного рассеяния света проведены исследования поликристаллических пленок Fe_3O_4 , сформированных реактивным распылением Fe в атмосфере O_2 на поверхности Si, покрытой тонким (1.4 nm) и толстым (1200 nm) слоем SiO₂. Установлено, что использование спектроскопии KPC пленок магнетита, сформированных на толстых буферных слоях с низким коэффициентом теплопроводности, может приводить к образованию фазы α -Fe₂O₃ за счет нагрева под действием лазерного излучения. Показано существование минимальной толщины поликристаллических пленок магнетита, при которой фазовой трансформации не происходит.

Работа выполнена при поддержке грантов ДВО РАН 09-III-A-02-023 и 09-I-ОФН-057, НШ-46342010.2 и гранта РФФИ № 11-02-98523-р_восток_а.

Список литературы

- [1] de Faria D.L.A. et al. // J. Raman Spectrosc. 1997. V. 28. P. 873-878.
- [2] Shebanova Olga N., Lazor Peter // J. Raman Spectrosc. 2003. V. 34. P. 845–852.
- [3] Balashev V.V., Korobtsov V.V., Pisarenko T.A., Chebotkevich L.A. // Technical Physics. 2011. V. 56. N 10. P. 1501–1507.
- [4] Cornell R.M., Schwertmann U. // The Iron Oxides: Structure, Properties, Reaction, Occurences and Uses. Weinheim: Wiley-VCH Verlag GmbH & Co.KGaA. 2003. 694 p.
- [5] Verbe J.L. // Phys. Rev. B. 1974. V. 9. N 12. P. 5236-5248.
- [6] Lübbe M. et al. // Surface Science. 2010. V. 604. P. 679-685.
- [7] Oh S.J., Cook D.C., Townsend H.E. // Hyperfine Interact. 1998. V. 112. P. 59-65.

- [8] Chamritski I., Burns G. // J. Phys. Chem. B. 2005. V. 109. P. 4965-4968.
- [9] *Бабичев А.П.* и др. // Физические величины: Справочник. М.: Энергоатомиздат, 1991. 1232 с.
- [10] Shebanova Olga N., Lazor Peter // J. Solid State Chemistry. 2003. V. 174. P. 424–430.
- [11] *Ready J.F.* // Effects of high-power laser radiation. New York–London: Academic Press, 1971. 468 p.