03

Сравнительное исследование латерального фотовольтаического эффекта в структурах Fe₃O₄/SiO₂/*n*-Si и Fe₃O₄/SiO₂/*p*-Si

© Т.А. Писаренко^{1,2}, В.В. Балашев^{1,2}, В.А. Викулов¹, А.А. Димитриев^{1,2}, В.В. Коробцов^{1,2}

¹ Институт автоматики и процессов управления ДО РАН, Владивосток, Россия ² Дальневосточный федеральный университет, Владивосток, Россия

E-mail: tata_dvo@iacp.dvo.ru

(Поступила в Редакцию 9 февраля 2018 г. В окончательной редакции 16 февраля 2018 г.)

Представлены результаты сравнительного исследования латерального фотовольтаического эффекта в структурах Fe₃O₄/SiO₂/*n*-Si и Fe₃O₄/SiO₂/*p*-Si. В обеих структурах латеральное фотонапряжение максимально вблизи измерительных контактов, но имеет противоположный знак. При смещении светового пятна от измерительных контактов оно линейно меняется в структуре Fe₃O₄/SiO₂/*n*-Si и экспоненциально затухает в структуре Fe₃O₄/SiO₂/*p*-Si. Установлено, что инверсия полярности фотонапряжения при смене типа проводимости кремния обусловлена наличием интерфейсных состояний на границе раздела SiO₂/Si. Обнаружено, что для обеих структур наблюдается экстремальная толщинная зависимость фотонапряжения с оптимальной толщиной пленки Fe₃O₄ ~ 50 nm.

Работа частично поддержана Комплексной программой фундаментальных исследований ДВО РАН "Дальний Восток" 2018–2020 гг. № 18-3-022 (0226-18-0031).

DOI: 10.21883/FTT.2018.07.46114.037

1. Введение

Латеральный фотовольтаический эффект (ЛФЭ) в полупроводниковых структурах интенсивно исследуется в течение длительного времени в связи с его широким практическим применением в оптоэлектронных устройствах [1–5]. ЛФЭ возникает при неравномерном освещении *pn*-перехода в результате латеральной диффузии и рекомбинации фотогенерированных электроннодырочных пар [1–4]. Подобный эффект также исследовался в структурах металл-полупроводник (МП) [6–11] и металл-оксид-полупроводник (МОП) [12–18]. Этот эффект применяется в позиционно-чувствительных детекторах, поскольку при смещении светового пятна латеральное фотонапряжение меняется линейно [1,4,5].

Генерируемое фотонапряжение, как правило, измерялось на контактах, расположенных со стороны, противоположной освещению [2-7]. Однако недавно было показано [8,9,12,13], что чувствительность ЛФЭ в структурах МП и МОП может быть увеличена при освещении и расположении контактов со стороны пленки металла. Например, в структурах Ti/Si и Co/Si чувствительность ЛФЭ, измеренная со стороны металла, в ~1.45 раза больше по сравнению с аналогичной характеристикой, измеренной со стороны кремния [13]. Введение в структуру Co/Si туннельно-тонкого слоя SiO2 также способствует увеличению чувствительности ЛФЭ [8,9,13]. На основании теоретических расчетов авторы [13] пришли к заключению, что использование в МОП-структурах металлов с большой работой выхода и высоким удельным сопротивлением приводит к усилению ЛФЭ.

В этой связи представляет интерес структура $Fe_3O_4/SiO_2/Si$, поскольку работа выхода электронов в магнетите (Fe_3O_4) равна 5.2 eV [19], а его удельное сопротивление достигает 200 $m\Omega \cdot cm$ [20]. Действительно, в появившейся недавно работе [17] показано, что в структуре $Fe_3O_4/SiO_2/n$ -Si чувствительность ЛФЭ имеет высокое значение 32.5 mV/mm, которое сопоставимо с величинами, полученными на структурах Me/SiO₂/Si [8,9,12,13], и превышающее чувствительность ЛФЭ в структурах Me/Si [6,7,10].

Большинство работ по исследованию ЛФЭ было выполнено в МП и МОП структурах на основе *n*-Si [8–10,12–14,16,17], тогда как в структурах на основе *p*-Si подобные исследования проводились в меньшем объеме [6,7,10,15]. Это обусловлено большей практической значимостью кремния *n*-типа для фотовольтаики из-за превышения времени жизни неосновных носителей в нем по сравнению с кремнием *p*-типа [18]. Хотя недавно было обнаружено [18], что в структуре Ni/SiO₂/Si зависимость латерального фотонапряжения от положения светового пятна не только линейна на подложках обоих типов проводимости, но величина латерального фотонапряжения в структуре Ni/SiO₂/p-Si в 4 раза больше, чем в структуре Ni/SiO₂/*n*-Si.

В настоящей работе приведены результаты сравнительного исследования ЛФЭ в $Fe_3O_4/SiO_2/n$ -Si и $Fe_3O_4/SiO_2/p$ -Si структурах. Было обнаружено, что в структуре $Fe_3O_4/SiO_2/n$ -Si фотонапряжение линейно меняется при перемещении светового пятна между контактами, тогда как в структуре $Fe_3O_4/SiO_2/p$ -Si оно быстро затухает при смещении светового пятна от контактов. При смене типа проводимости кремния наблюдается инверсия полярности фотонапряжения, которая объясняется тем, что в структуре $Fe_3O_4/SiO_2/n-Si$ встроенное поле направлено от кремния к магнетиту, тогда как в структуре Fe₃O₄/SiO₂/*p*-Si — от магнетита к кремнию, что обусловлено наличием интерфейсных состояний на границе раздела SiO₂/Si. Для обеих структур наблюдается экстремальная зависимость фотонапряжения от толщины пленки Fe₃O₄ с локализацией максимума вблизи ~ 50 nm. Предполагается, что в Fe₃O₄/SiO₂/Si структурах, из-за высокого удельного сопротивления магнетита, характеристики латерального фотоэффекта определяются процессами латеральной диффузии избыточных фотогенерированных носителей вытянутых встроенным полем барьера из объема кремния в область, прилегающую к границе раздела SiO₂/Si, а роль пленки магнетита сводится лишь к формированию изгиба зон в этой области.

2. Методика эксперимента

Поликристаллические пленки Fe₃O₄ различной толщины (20–100 nm) были выращены на окисленной поверхности Si(001) в высоковакуумной установке "Катунь" методом реактивного осаждения Fe в атмосфере O₂. Условия и параметры синтеза пленок магнетита подробно изложены в работе [21]. Были использованы кремниевые подложки Si(100) легированные фосфором ($\rho = 7.5 \Omega \cdot \text{cm}$) и бором ($\rho = 4.5 \Omega \cdot \text{cm}$). Туннельный слой SiO₂ толщиной 1.5 nm был получен кипячением кремниевой подложки в азотной кислоте в течение 5 min на заключительной стадии влажной химической очистки.

Для изучения ЛФЭ использовали He:Ne лазер $(\lambda = 633 \text{ nm}, P = 0.3 \text{ mW})$ и универсальный измерительный прибор Keithley-2000. Диаметр лазерного пятна был равен приблизительно $60 \,\mu$ m. Алюминиевые контакты наносились на пленку Fe₃O₄ термическим распылением в виде полосок длиной 2 mm и шириной 1 mm, расстояние между которыми было 2 mm.

3. Результаты

Зависимости латерального фотонапряжения от положения лазерного пятна на поверхности пленки магнетита в структурах $Fe_3O_4/SiO_2/n$ -Si и $Fe_3O_4/SiO_2/p$ -Si с пленками Fe_3O_4 различной толщины представлены на рис. 1, *a* и 1, *b*, соответственно. При сравнении рис. 1, *a* и рис. 1, *b*, можно видеть, что максимальная величина фотонапряжения вблизи контактов в структуре $Fe_3O_4/SiO_2/n$ -Si в 6.7 раза выше, чем в структуре $Fe_3O_4/SiO_2/p$ -Si. Кроме того, при смене типа проводимости кремния наблюдается изменение полярности фотонапряжения, так же как в структурах CoNi/Si [10] и Ni/SiO_2/Si [18].

Рис. 1. Зависимости латерального фотонапряжения от положения светового пятна в структурах с различной толщиной пленки Fe₃O₄: $a - \text{Fe}_3\text{O}_4/\text{SiO}_2/n$ -Si и $b - \text{Fe}_3\text{O}_4/\text{SiO}_2/p$ -Si (на вставке показана схема измерения ЛФЭ).

Тип проводимости кремниевой подложки влияет также и на характер зависимости латерального фотонапряжения от положения светового пятна. В структуре Fe₃O₄/SiO₂/*n*-Si эта зависимость линейна (рис. 1, *a*), тогда как в структуре Fe₃O₄/SiO₂/*p*-Si латеральное фотонапряжение быстро затухает при удалении светового пятна от контактов (рис. 1, *b*) по экспоненциальному закону $LPV = A \exp[-x/L_{\text{eff}}]$, где LPV — латеральное фотонапряжение, *x* — положение светового пятна между контактами, L_{eff} — длина диффузионного смещения неосновных носителей, которая равна ~ 100 μ m.

Линейные зависимости ЛФЭ наблюдались и в МОП структурах на основе *n*-Si с пленками металлов Со [8,12,13], Ti [13], Au [14], Fe₃O₄ [17], Ni [18]. Такие зависимости характеризуются чувствительностью $\kappa = d(LPV)/dx$ [13,16] и нелинейностью $\delta = 2\sigma/F$ [4,6,13], где σ — среднеквадратичное отклонение на линейном участке, F — максимальная измеренная величина латерального фотонапряжения. Нелинейность и чувствительность ЛФЭ в структу-

Рис. 2. a — зависимости от толщины пленки магнетита: l — чувствительности и 2 — нелинейности ЛФЭ в структуре Fe₃O₄/SiO₂/*n*-Si. b — зависимости максимального фотонапряжения вблизи контактов от толщины пленки магнетита в структурах l — Fe₃O₄/SiO₂/*n*-Si и 2 — Fe₃O₄/SiO₂/*p*-Si.

ре Fe₃O₄/SiO₂/*n*-Si в зависимости от толщины пленки Fe₃O₄, приведены на рис. 2, *а*. Из этого рисунка можно видеть, что с увеличением толщины пленки Fe₃O₄ от 20 до 100 nm нелинейность экспоненциально уменьшается от 9.3 до 4%, а чувствительность сначала растет, а затем убывает. Подобные зависимости чувствительности от толщины ранее наблюдались в структурах с пленками Co [8,12], Ti [13], Ni [18]. Нелинейная зависимость латерального фотонапряжения от положения светового пятна в структуре Fe₃O₄/SiO₂/*p*-Si оказалась несколько неожиданным результатом, поскольку можно было ожидать поведение подобное описанному в [18], где в структуре Ni/SiO₂/*p*-Si зависимость фотонапряжения была линейной, а максимальное фотонапряжение даже больше, чем в структуре Ni/SiO₂/*n*-Si.

На рис. 1 также видно, что в структурах $Fe_3O_4/SiO_2/n$ -Si и $Fe_3O_4/SiO_2/p$ -Si величина максимального фотонапряжения вблизи контактов зависит от толщины пленки магнетита. Вид этих зависимостей показан на рис. 2, b, из которого можно видеть, что для обеих структур имеется оптимальная толщина пленки $Fe_3O_4 \sim 50$ nm, при отклонении от которой в сторону меньших

5 Физика твердого тела, 2018, том 60, вып. 7

и больших значений фотонапряжение уменьшается. Причем тип проводимости кремния не влияет на положение максимума. Подобные зависимости являются характерными и для ЛФЭ в структурах Me $-SiO_2-Si$ [8,12,13,18]. Рост латерального фотонапряжения в области малых толщин металлической пленки объясняется изменением высоты встроенного барьера на границе раздела SiO₂/Si, а уменьшение латерального фотонапряжения в области больших толщин связывается с увеличением проводимости металлической пленки и эффектом закорачивания [18].

Таким образом, представленные выше результаты указывают на существенную зависимость ЛФЭ от типа проводимости кремниевой подложки в структуре Fe₃O₄/SiO₂/Si, что проявляется в величине латерального фотонапряжения, его знаке, а также характере зависимости при перемещении светового пятна между контактами. Информация о причинах этих различий может быть получена из рассмотрения энергетических зонных диаграмм структур Fe₃O₄/SiO₂/*n*-Si и Fe₃O₄/SiO₂/*p*-Si, на основе которых анализируются процессы генерации, разделения и латеральной диффузии фотогенерируемых электронно-дырочных пар.

4. Обсуждение

Согласно теории ЛФЭ [1–3,5], при неоднородном облучении металлической пленки в структуре Me/SiO₂/Si, в области облучения кремния происходит генерация электронно-дырочных пар, которые диффундируют в область пространственного заряда Si, где они разделяются встроенным полем. Величина и направление этого поля зависят от величины и знака встроенного потенциала $q\varphi_i$, определяемого разностью работ выхода электронов из металла и кремния. Причем работа выхода из кремния зависит от типа легирующей примеси и ее концентрации.

В этой работе мы использовали подложки кремния, легированные фосфором и бором. Работа выхода электронов из Si может быть оценена с помощью уравнения $q\phi_s = q\chi_{Si} + (E_F - E_C)$, где $q\chi_{Si} = 4.05 \,\text{eV}$ — сродство к электрону атомов кремния и $E_F - E_C$ — расстояние от уровня Ферми до края зоны проводимости. В случае *n*-Si $E_C - E_F = kT \ln(N_C/N_D)$, где N_C — эффективная плотность состояний у края зоны проводимости $(N_C = 2.8 \cdot 10^{19} \,\mathrm{cm}^{-3}$ при 300 К [22]), N_D — концентрация электронов при комнатной температуре. Таким образом, для n-Si(001) с удельным сопротивлением $\rho = 7.5 \,\Omega \cdot \mathrm{cm}, \ N_D = 7 \cdot 10^{14} \,\mathrm{cm}^{-3}$ и $E_F - E_C = 0.27 \,\mathrm{eV}$ работа выхода электронов будет равна 4.32 eV. В случае *p*-Si $E_C - E_F = E_g - (E_F - E_V)$, где E_g — ширина запрещенной зоны кремния [22], $E_F - E_V$ — расстояние от верхнего края валентной зоны до уровня Ферми, рассчитанное из $E_F - E_V = kT \ln(N_V/N_A)$, где N_V — эффективная плотность состояний у края валентной зоны $(N_V = 1 \cdot 10^{19} \,\mathrm{cm}^{-3}$ при 300 К [22]). Для

Рис. 3. Зонные диаграммы в термодинамическом равновесии для структур: $a - \text{Fe}_3\text{O}_4/\text{SiO}_2/n\text{-Si}$ и $b - \text{Fe}_3\text{O}_4/\text{SiO}_2/p\text{-Si}$.

p-Si(001) с удельным сопротивлением $\rho = 4.5 \,\Omega \cdot \text{сm}$, $N_A = 3 \cdot 10^{15} \,\text{cm}^{-3}$ и $E_F - E_V = 0.21 \,\text{eV}$ работа выхода равна 4.96 eV. Работа выхода электрона из магнетита равна 5.2 eV [19]. Используя эти данные, мы получили значения встроенного потенциала 0.88 и 0.24 eV, соответственно для структур Fe₃O₄/SiO₂/*n*-Si и Fe₃O₄/SiO₂/*p*-Si. Положительный знак встроенного потенциала указывает на то, что в обеих структурах на границе раздела SiO₂/Si зоны должны быть изогнуты вверх, и встроенное поле направлено от кремния к пленке магнетита.

На основании этих данных мы построили зонные диаграммы структур $Fe_3O_4/SiO_2/n$ -Si и $Fe_3O_4/SiO_2/p$ -Si в условиях термодинамического равновесия, которые представлены на рис. 3, *а* и 3, *b* соответственно. Из рассмотрения зонных диаграмм можно видеть, что в

структуре Fe₃O₄/SiO₂/n-Si зоны сильно изогнуты вверх, в результате чего на границе раздела SiO₂/n-Si формируется инверсионный слой ($\psi_S > \psi_F$, на рис. 3, *a* $\psi_S = E_i(0) - E_i = 0.88 \,\mathrm{eV}$ и $\psi_F = E_F - E_i = 0.29 \,\mathrm{eV}).$ Тогда как в структуре Fe₃O₄/SiO₂/p-Si, при изгибе зон вверх, на границе раздела SiO₂/p-Si формируется обогащенный слой (рис. 3, b). Изгиб зон вверх указывает на то, что в обеих структурах встроенное поле вытягивает к границе раздела SiO₂/Si носители заряда одного и того же типа, и, следовательно, фотонапряжение должно иметь одну и ту же полярность. Однако, результаты наших экспериментов показывают, что знак фотонапряжения зависит от типа проводимости кремниевой подложки (рис. 1). И это наблюдение согласуется с результатами работ по исследованию латерального фотонапряжения в структурах CoNi/Si [10] и Ni/SiO₂/Si [18]. Согласно представлениям работы [18], инверсия полярности фотонапряжения при смене типа проводимости кремниевой подложки связана с изменением направления изгиба зон на границе раздела SiO₂/Si. В структуре Ni/SiO₂/n-Si зоны изогнуты вверх, и к границе раздела SiO₂/n-Si вытягиваются фотогенерированные дырки, тогда как в структуре Ni/SiO₂/p-Si зоны изогнуты вниз, и к границе раздела SiO₂/*p*-Si вытягиваются фотогенерированные электроны. Иначе говоря, встроенное поле в структуре на основе *n*-Si направлено от кремния к металлической пленке, а в структуре на основе *p*-Si — от пленки металла к кремнию. Такой подход, применительно к структуре Fe₃O₄/SiO₂/Si, предполагает, что, в случае кремниевой подложки *p*-типа, зоны на границе раздела SiO₂/*p*-Si должны быть изогнуты вниз, а не вверх как это было получено из расчета энергетических зонных диаграмм для идеализированного случая (рис. 3, b), без учета факторов, приводящих к уменьшению высоты барьера, например, таких как поперечное фотонапряжение (V_a) при освещении [1,2,23] или наличие интерфейсных состояний на границе раздела SiO₂/Si [22,24-28].

Известно, что при освещении встроенный потенциал понижается на величину qV_a [23]:

$$qV_a = kT \ln\left[1 + \frac{\Phi_0}{sn_0} \left(a - \frac{\exp(-\alpha d)}{1 + \alpha L_{\text{eff}}}\right)\right], \qquad (1)$$

где k — постоянная Больцмана, T — температура, q — заряд электрона, Φ_0 — плотность потока фотонов на поверхности кремния, $s = v_T/4$ (v_T — средняя тепловая скорость носителей), n_0 — концентрация основных носителей на границе раздела SiO₂/p-Si в неосвещенном состоянии, α — коэффициент поглощения света, d — толщина области пространственного заряда, $L_{\rm eff}$ — диффузионная длина неосновных носителей. Φ_0 , величина определяемая мощностью P, длиной волны λ и диаметром пучка r лазерного излучения как $\Phi_0 = P\lambda/(1.24\pi r^2 q)$. Подстановка численных значений наших структур и параметров освещения в выражение (1) дает величину qV_a равную 2.6 \cdot 10⁻⁹ eV, что явно недостаточно для смены направления встроенного поля.

Другой причиной изменения направления изгиба зон может быть закрепление уровня Ферми на интерфейсных состояниях на границе раздела SiO₂/Si, которые начинают проявлять себя, когда их плотность (N_{ss}) превышает 10^{11} cm^{-2} [22,24]. В структурах с ультратонким слоем SiO₂ ($t_{ox} = 1 - 2 \text{ nm}$), полученным кипячением в концентрированной HNO₃, плотность интерфейсных состояний выше, чем $3 \cdot 10^{12}$ сm⁻² [24,25]. При таких значениях N_{ss} высота барьера в структурах на *n*-Si и *p*-Si понижается, соответственно, на ~ 0.3 и ~ 0.33 eV [24]. Принимая во внимание эти данные, мы получили для наших структур Fe₃O₄/SiO₂/n-Si и Fe₃O₄/SiO₂/p-Si высоты барьера равные 0.85 и 0.82 eV, соответственно. Интересно отметить, что практически такие же значения высоты барьера были экспериментально получены для гетероструктур Fe₃O₄/*n*-Si [26,27] и Fe₃O₄/*p*-Si [28]. Уменьшение экспериментально определенной высоты барьера относительно теоретической ($q\phi_B = 1.15 \,\mathrm{eV}$), авторы работы [27] также связывают с наличием интерфейсных состояний на границе раздела и закреплением уровня Ферми на них.

На рис. 4, а и 4, в представлены зонные диаграммы с учетом интерфейсных состояний для структур Fe₃O₄/SiO₂/*n*-Si и Fe₃O₄/SiO₂/*p*-Si, соответственно. Эти рисунки показывают, что, действительно, учет интерфейсных состояний в структуре Fe₃O₄/SiO₂/p-Si приводит к тому, что встроенный потенциал имеет отрицательный знак $q\phi_i = -0.09 \,\text{eV}$, и направление изгиба зон меняется, в результате на границе раздела $SiO_2/p-Si$ формируется обедненный слой *p*⁻-типа. Направление встроенного поля также меняется, и к границе раздела SiO_2/p -Si вытягиваются фотогенерированные электроны, а не дырки, как в идеализированном случае. Что касается структуры Fe₃O₄/SiO₂/n-Si, то в ней изгиб зон лишь уменьшается до 0.58 eV, а вблизи границы раздела SiO₂/*n*-Si сохраняется инверсионный слой ($\psi_S > \psi_F$, на рис. 4, $a \psi_S = 0.58 \text{ eV}, \psi_F = 0.29 \text{ eV})$, как и в идеализированном случае (рис. 3, *a*). Таким образом, лишь с учетом интерфейсных состояний на границе раздела SiO₂/Si, встроенные поля в структурах $Fe_3O_4/SiO_2/n$ -Si и Fe₃O₄/SiO₂/*p*-Si имеют разное направление и обеспечивают инверсию полярности фотонапряжения.

Максимальная величина латерального фотонапряжения наблюдается вблизи контактов и, как видно на рис. 1, в структуре Fe₃O₄/SiO₂/*n*-Si она в 6.7 раза больше, чем в структуре Fe₃O₄/SiO₂/*p*-Si, при одной и той же толщине пленки магнетита (50 nm). Подстановка в выражение (1) значений концентрации основных носителей на границе раздела SiO₂/Si для структур Fe₃O₄/SiO₂/*n*-Si и Fe₃O₄/SiO₂/*p*-Si, дает величины qV_a равные 0.4 и $3 \cdot 10^{-3}$ eV, соответственно, которые и обуславливают наблюдаемое различие фотонапряжения вблизи контактов, поскольку из теории ЛФЭ известно [1,2], что латеральное фотонапряжение.

Как было отмечено выше, в структуре $Fe_3O_4/SiO_2/n-Si$ наблюдается линейная зависимость латерального фотонапряжения от положения светового пятна (рис. 1, *a*),

Рис. 4. Зонные диаграммы с учетом интерфейсных состояний для структур $a - \text{Fe}_3\text{O}_4/\text{SiO}_2/n$ -Si и $b - \text{Fe}_3\text{O}_4/\text{SiO}_2/p$ -Si.

тогда как в структуре Fe₃O₄/SiO₂/*p*-Si — экспоненциально спадающая (рис. 1, *b*). Причину такого различия можно понять, полагая, что металлическая пленка на поверхности МОП структуры служит лишь для создания поверхностного изгиба зон в области кремния, прилегающей к границе раздела SiO₂/Si, а сам процесс генерации латерального фотонапряжения проходит в приповерхностной области кремния. В зависимости от степени изгиба зон, в приповерхностной области кремния формируются инверсионный, обедненный или обогащенный слои, и образуются переходы типа *pn*, $p^-p(n^-n)$ или $p^+p(n^+n)$, к которым и применима теория ЛФЭ [1–3]. Так, в структуре Fe₃O₄/SiO₂/*n*-Si (рис. 3, *a*), вблизи границы раздела SiO₂/*n*-Si образуется *pn*-переход, состоящий из инверсионного слоя и объема кремния. При этом избыточные фотогенерированные носители будут основными как в области *p*-типа, так и в области *n*-типа. Для этой структуры, в рамках диффузионной теории латерального фотоэффекта [1–3], линейная зависимость латерального фотонапряжения от положения светового пятна выводится из уравнения непрерывности полного тока основных носителей и имеет следующий вид:

$$LPV = K_1 \left[e^{\beta |\varphi_i|} \right] (|x_1| - |x_2|), \qquad (2)$$

где K_1 — коэффициент пропорциональности; $\beta = q/kT$; φ_i — встроенный потенциал; x_1, x_2 — расстояния от точки освещения до контактов. Из выражения (2) видно, что величина латерального фотонапряжения экспоненциально возрастает с увеличением встроенного потенциала и линейно меняется между контактами, проходя через ноль в центральной точке $(x_1 = x_2)$, что и наблюдается в эксперименте для структуры Fe₃O₄/SiO₂/n-Si, рис. 1, а. С другой стороны, в структуре Fe₃O₄/SiO₂/p-Si (рис. 3, b), вблизи границы раздела SiO₂/p-Si формируется *p*-*p*-переход, состоящий из обедненного слоя и объема кремния. В этом случае избыточные фотогенерированные электроны будут неосновными в обедненном p^{-} -слое, а остающиеся в объеме кремния p-типа фотогенерированные дырки — основными. В результате латеральная диффузия фотогенерированных носителей вдоль границы раздела SiO₂/p-Si будет ограничена неподвижными электронами в обедненном слое p^{-} -типа [1,29], что и приводит к нелинейной зависимости латерального фотонапряжения от положения светового пятна, которая теперь выводится из уравнения непрерывности, определяемого законами диффузии неосновных носителей в обедненном слое, и имеет вид [3,30]:

$$LPV = K_2 \left[1 - e^{-\beta |\varphi_i|/2} \right] \left(e^{-|x_1|/L_{\text{eff}}} - e^{-|x_2|/L_{\text{eff}}} \right), \quad (3)$$

где *K*₂ — коэффициент пропорциональности; *x*₁, *x*₂ расстояния от точки освещения до контактов; Leff эффективная длина диффузии носителей в приповерхностном слое кремния. В случае $L_{\rm eff} = L_{\rm opt}$, где $L_{\rm opt}$ соответствует диффузионной длине основных носителей, эта зависимость может быть приведена к виду (2). Нарушение линейности ЛФЭ возникает при условии $L_{\rm eff} < L_{\rm opt}$ [30]. Оценка величин $L_{\rm eff}$ и $L_{\rm opt}$ для нашего случая дает значения ~ 100 и $\sim 3000\,\mu{\rm m}$, соответственно. Малое значение $L_{\rm eff}$ в структуре Fe₃O₄/SiO₂/*p*-Si, объясняется тем, что фотогенерированные электроны, вытянутые встроенным полем в обедненный слой, создают там отрицательный объемный заряд, а оставшиеся в области объемного Si p-типа фотогенерированные дырки — положительный объемный заряд. В результате происходит существенное ограничение диффузии из-за электростатических сил притяжения [29]. Именно малое значение Leff, на порядок меньшее, чем расстояние между контактами, приводит к быстрому затуханию и отсутствию фотонапряжения в центральной части зависимости фотонапряжения от положения светового пятна в структуре $Fe_3O_4/SiO_2/p$ -Si (рис. 1, *b*).

5. Заключение

Таким образом, исследование ЛФЭ в структуре Fe₃O₄/SiO₂/Si с разным типом проводимости кремниевой подложки показало, что в структуре Fe₃O₄/SiO₂/n-Si с инверсионным слоем зависимость ЛФЭ от положения лазерного пятна является линейной, тогда как в структуре Fe₃O₄/SiO₂/p-Si с обедненным слоем латеральное фотонапряжение имеет противоположный знак и быстро затухает при удалении лазерного пятна от контактов. Причиной такого различия является тип фотогенерированных носителей, вытянутых встроенным полем в прилегающий к границе раздела SiO₂/Si слой кремния и латерально диффундирующих по нему: так в структуре Fe₃O₄/SiO₂/*n*-Si — это дырки в инверсионном слое *р*-типа, тогда как в структуре Fe₃O₄/SiO₂/*p*-Si это электроны в обедненном слое *p*⁻-типа. Показано, что инверсия полярности фотонапряжения в структурах Fe₃O₄/SiO₂/n-Si и Fe₃O₄/SiO₂/p-Si связана с наличием интерфейсных состояний на границе раздела SiO₂/Si, понижающих высоту встроенного барьера и тем самым определяющих направление встроенного поля.

Список литературы

- [1] J.T. Wallmark. Proc. IRE 45, 474 (1957).
- [2] G. Lucovsky. J. Appl. Phys. 31, 1088 (1960).
- [3] П.П. Коноров, Ю.А. Таранов. В сб.: Уч. записки ЛГУ 370, 17, 114. Сер. физ. Вопросы электроники твердого тела. Изд-во ЛГУ, Л. (1974).
- [4] E. Fortunato, G. Lavareda, R. Martins, F. Soares, L. Fernandes. Sens. Actuat. A 51, 135 (1996).
- [5] D.J.W. Noorlag. Lateral-photoeffect position-sensitive detectors. Delft University of Technology. Delft, The Netherlands (1982).
- [6] J. Henry, J. Livingstone. J. Mater. Sci. Mater. Electron. 12, 387 (2001).
- [7] J. Henry, J. Livingstone. J. Phys. D 41, 165106 (2008).
- [8] S.Q. Xiao, H. Wang, Z.C. Zhao, Y.Z. Gu, Y.X. Xia, Z.H. Wang. Opt. Express 16 6, 3798 (2008).
- [9] C.Q. Yu, H. Wang, S.Q. Xiao, Y.X. Xia. Opt. Express 17, 24, 21712 (2009).
- [10] S.H. Wang, W.X. Wang, L.K. Zou, X. Zhang, J.W. Cai, Z.G. Sun, B.G. Shen, J.R. Sun. Adv. Mater. 26, 8059 (2014).
- [11] S.H. Wang, X. Zhang, L.K. Zou, J. Zhao, W.X. Wang, J.R. Sun. Chin. Phys. B 24, 107307 (2015).
- [12] S.Q. Xiao, H. Wang, Y.X. Xia, J.J. Lu, Q.Y. Lin, Z.H. Wang. New J. Phys. 10, 033018 (2008).
- [13] C. Yu, H. Wang. Sensors 10, 10155 (2010).
- [14] L. Chi, P. Zhu, H. Wang, X. Huang, X. Li. J. Opt. 13, 015601 (2011).
- [15] J.P. Cascales, I. Martinez, D. Diaz, J.A. Rodrigo, F.G. Aliev. Appl. Phys. Lett. **104**, 231118 (2014).
- [16] S. Liu, X. Xie, H. Wang. Opt. Express 22, 10, 11627 (2014).
- [17] X. Wang, B. Song, M. Huo, Y. Song, Z. Lv, Y. Zhang, Y. Wang, Y. Song, J. Wen, Y. Sui, J. Tang. RSC Adv. 5, 65048 (2015).
- [18] X. Huang, C. Mei, J. Hu, D. Zheng, Z. Gan, P. Zhou, H. Wang. IEEE Electron Device Lett. 37, 1018 (2016).

- [19] M. Fonin, R. Pentcheva, Yu.S. Dedkov, M. Sperlich, D.V. Vyalikh, M. Scheffler, U. Rüdiger, G. Güntherodt. Phys. Rev. B 72, 104436 (2005).
- [20] V.A. Vikulov, A.A. Dimitriev, V.V. Balashev, T.A. Pisarenko, V.V. Korobtsov. Mater. Sci. Eng. B 211, 33 (2016).
- [21] В.В. Балашев, В.А. Викулов, Т.А. Писаренко, В.В. Коробцов. ФТТ 57, 12, 2458 (2015). [V.V. Balashev, V.A.Vikulov, T.A. Pisarenko, V.V. Korobtsov. Phys. Solid State, 57, 12, 2532 (2015)].
- [22] С.М. Зн. Физика полупроводниковых приборов. Мир, М. (1984) ч. 1.
- [23] О.В. Константинов, Б.В. Царенков. ФТП 24, 2126 (1990).
- [24] H. Angermann. Appl. Surf. Sci. 312, 3 (2014).
- [25] S. Jurecka, H. Kobayashi, M. Takahashi, T. Matsumoto, E. Pincik. Appl. Surf. Sci. 258, 8409 (2012).
- [26] A.R. Deniz, Z. Çaldıran, Ö. Metin, K. Meral, S. Aydogan. J. Colloid Interf. Sci. 473, 172 (2016).
- [27] S. Ghosh, P.C. Srivastava. J. Electron. Mater. 43, 11, 4357 (2014).
- [28] Z. Çaldiran, A.R. Deniz, Y. Sahin, Ö. Metin, K. Meral, S. Aydogan. J. Alloy. Compd. 552, 437 (2013).
- [29] С.М. Рывкин. Фотоэлектрические явления в полупроводниках. Физматгиз, М. (1963). Гл. 12, с. 309.
- [30] V.S. Vasilev, N.B. Velchev. Solid State Electron. 20, 999 (1977).

Редактор Ю.Э. Китаев