
The methods and the IACPaaS Platform tools for
semantic representation of knowledge and
development of declarative components for

intelligent systems
1st Valeria Gribova

Intelligent systems lab.
IACP FEB RAS

Vladivostok, Russian Federation
gribova@dvo.ru

2nd Alexander Kleschev
Intelligent systems lab.

IACP FEB RAS
Vladivostok, Russian Federation

kleschev@dvo.ru

3rd Philip Moskalenko
Intelligent systems lab.

IACP FEB RAS
Vladivostok, Russian Federation

philipmm@dvo.ru

4th Vadim Timchenko
Intelligent systems lab.

IACP FEB RAS
Vladivostok, Russian Federation

vadim@dvo.ru

5th Leonid Fedorischev
Intelligent systems lab.

IACP FEB RAS
Vladivostok, Russian Federation

fleo1987@mail.ru

6th Elena Shalfeeva
Intelligent systems lab.

IACP FEB RAS
Vladivostok, Russian Federation

shalf@dvo.ru

Abstract—The paper discusses the problem of ensuring the
viability of intelligent systems – systems with declarative knowl-
edge bases. Software tools for the development of such systems
that implement mechanisms for viability improvement are con-
sidered. These mechanisms are based on the construction of each
component according to its declarative model, which is specified
in a unified language for model description.

Index Terms—intelligent systems, software system mainte-
nance, software system viability, development tools

I. INTRODUCTION

Ensuring the viability of software systems (SS) is one of the
key problems in software engineering. The term viability refers
to the SS sustainability (performance preservation) to changes
in the environment and the ability to evolve during the lifecycle
[1], [2], [3]. Viability is directly related to the SS transparency,
which is characterized by three main properties: accessibility,
clarity and relevance of the information and components of
the SS to interest groups [4].

Among the many SSs, the class of intelligent systems is
distinguished. They are systems with knowledge bases (KBS),
which are actively used to solve various scientific and applied
problems. Their architecture, among the traditional compo-
nents – databases, business logic (solver) and user interface,
contains an additional component – the knowledge base. At
present, one can say that KBSs have reached the phase of
maturity. But the problem of ensuring their viability is acute,
since the development team of such systems includes knowl-
edge engineers and domain experts in addition to programmers

The work is carried out with the partial financial support of the RFBR
(projects nos. 19-07-00244, 18-07-01079) and by PFI “Far East” (project no
18-5-078).

and interface designers. This class of SS is characterized
by a continuous improvement of knowledge bases, and an
occasional improvement of problem solving method and of
an output explanation.

Despite the development of tools for creating of systems of
this class, the problem of their viability remains urgent:

• domain experts still cannot independently (without in-
termediaries like knowledge engineers and programmers)
build and maintain knowledge bases;

• part of the domain knowledge is “embedded” into the
problem solver, which makes their modification more
difficult, and its structure is hard to understand;

• the UI does not adapt to the requirements of users, of the
platform, of the domain, it usually has a “firm” structure
built into the problem solver.

These drawbacks make it necessary to use additional spe-
cialized mechanisms to ensure the viability of this class of
systems. The aim of the work is to describe new models and
methods aimed at providing the viability of the KBS.

II. REVIEW

There are three main types of KBS development tools: pro-
gramming languages, shells and specialized tool systems. Gen-
eral purpose programming languages (Python, C#, Java, etc.)
or specialized ones (LISP, Smalltalk, FRL, etc.) are universal
development tools. In [5] it is noted that the complexity of
intelligent system development with the use of programming
languages is so great that it is practically unaffordable.

Problem-independent and specialized shells greatly simplify
the creation of the KBS, however, they limit the possibilities of



their evolution: they have a pre-defined solver and an embed-
ded UI that cannot be modified if requirements change. Also,
the disadvantages of specialized shells include limitations on
the field of their use, and disadvantages of the problem-
independent ones – their “non-transparency” primarily for
domain experts who cannot independently (without knowledge
engineers) form and maintain a knowledge base as part of the
knowledge is built into the logical inference machine [5], [6].

Specialized tool systems are focused on a wide class of
KBS. Typical representatives of tool systems are: Level5
Object, G2, Clips, Loops, VITAL, KEATS, OSTIS, AT-
technology etc. [5], [6], [7]. They differ by the knowledge
representation formalisms, by the used output mechanisms,
and by the tools for UI forming.

Looking at these tools from the point of view of the
viability of KBS created with their use, it can be noted that
the evolutionary development of tool systems is focused on
achieving this important goal in one way or another. It is
primarily reflected in the tools which support the knowledge
base (KB) creation, which is one of the most difficult stages
of development of such systems, as well as in methods of
coupling of KB with a problem solver.

According to [6], the most common model of knowledge
representation remains the rule-based one. But by now, the
trend of production model systems amount reducing is obvi-
ous. Given the need for alternative knowledge representation
models, many development tools offer a mixed mechanism
for their presentation. For example, LOOP and G2 use rules
and object-oriented representation, ART – rules, frame-like
and object-oriented models for declarative knowledge. How-
ever, the proposed types of representation are not oriented
at independent (without knowledge engineers) formation and
modification of knowledge by domain experts.

For the formation of knowledge bases one can consider spe-
cialized tools based on ontologies: Protégé, OntoEdit, GrOWL,
Graphl, RDFGravity, WebVOWL, Ontolingua, OilEd, We-
bOnto, WebODE [9]. However, they usually implement an
object-oriented paradigm of knowledge representation, incom-
prehensible to most domain experts. A question of their
integration with a problem solver and UI also remains open.
In accordance with the knowledge representation model, an
appropriate mechanism for implementing the solver (reasoner)
is proposed. If there are several models supported by the sys-
tem, respectively, several solver implementation mechanisms
and languages are supported. E.g., the SWORIER system uses
a reasoning mechanism based on ontologies and rules. Such
solutions, on the one hand, are aimed at giving the possibil-
ity of choosing the most adequate knowledge representation
model and the corresponding solver, but on the other hand,
the transparency of such systems remains quite low.

The support of UI development is carried out in several
ways. The developer is offered a set of tools provided by
the toolkit, for example, [7]. This may be a specialized
programming language or tools similar to interface builders,
offered by various CASE-tools: a set of WIMP interface
elements that a user can define, specify their properties and

associate them with commands (user and / or solver actions)
and / or data (input or output). The interaction scenario in
this case is embedded into the solver. Interface development
can be carried out using the language in which the solver is
designed. Interaction with different libraries provided by the
toolkit is possible.

Thus, the most flexible tool for KBS implementation are
specialized tool systems, as they allow one to implement
different classes of KBS. However, the problem of the viability
of this class of systems is still far from a final solution.
Therefore, the search for new, improved mechanisms for
viability improvement of such systems remains an urgent task.

III. BASIC PRINCIPLES OF KBS VITALITY

The viability of SS and KBS in particular is largely deter-
mined by their transparency. One of the main attributes of a
transparent SS is clarity for interest groups. For KBS such
groups are:

• domain experts who are responsible for the development
and maintenance of KB,

• programmers who create and maintain a solver,
• interface designers who implement the UI of a solver and

the UI for KB editors.
For KBS, it is fundamentally important to use relevant

knowledge that must be formed and maintained by domain
experts or inductively (but in the latter case its representation
should be intelligible to experts). This is possible only if the
knowledge representation language is focused on the class
of problems to be solved, and its terminology is familiar to
experts. To ensure the transparency of the solver, its structure
and modules should be clear to the maintainer. This is possible
if most of the solver is presented declaratively (which allows
to control solvers with the help of editors), and domain
knowledge is not included in the solver. UI transparency can
be ensured, firstly, by providing users with different types of
UI which suite the model for presenting information most
appropriately, secondly, by separating the data from the logic
of its processing and its presentation method. The latter also
provides separate modification of each of the components.

To implement these requirements, the following basic solu-
tions are proposed:

• common principles for creating KBS components;
• a two-level approach to the formation of components:

first, a structural declarative model (component ontology)
is formed, then the necessary component of the KBS is
created by it;

• unified language and editor for creating models of all
components;

• automatic generation of editors for creation of compo-
nents basing on their models;

• implementation of instrumental and applied intelligent
systems as cloud services.

All proposed solutions are based on a model description
language that allows one to describe arbitrary models oriented
and adapted to the terminology of developers, with the tran-
sition from general concepts to detailed ones. The models of



the components of intelligent services are formed in the model
description language and are represented in the form of a con-
nected marked rooted hierarchical binary digraph. The markup
defines the semantics for the rules of formation (creation and
modification) of components, imposing restrictions on their
structure and content [10], [11].

A. Development and maintenance of the knowledge base

In accordance with the two-level approach to the formation
of components of the KBS, at the first stage a specialized
model of knowledge (data) representation is formed – the
ontology of knowledge, which takes into account the specifics
of the organization of knowledge and data in a given domain.
Further, according to the model of knowledge (data), the com-
ponent editor generator builds an editor of the knowledge base
/ database (see Fig. 1). Domain experts have the opportunity
to form knowledge and data bases in terms of their concept
systems but not in terms of some fixed knowledge and data
representation language.

Figure 1. Knowledge base formation process.

B. Development and maintenance of problem solver

The problem solver is a set of agents that interact with
each other by the exchange of messages. In accordance with
the two-level approach, developers are offered unified agent
and solver models for all services. To organize the launch of
solvers with specific sets of input and output data, the cloud
service model is also defined. To increase the transparency of
the imperative parts of the agent and of the message template
after the description of their declarative part is specified, their
source code sketch in the Java language is generated. The de-
veloped imperative code is associated with the corresponding
vertex of the agent (or message template) model.

C. UI development and maintenance

The development of an interface of intelligent services
implies the development of a web interface. The interface

design is based on the Model-View-Controller (MVC) pattern.
Its fundamental principle consists in the separation of data,
the logic of its processing and the way it is presented in
order to provide independent modification of each component.
The projection of this pattern on the interface model is as
follows. The Model component includes: an abstract UI model
containing a description of the structure of standard WIMP
interface elements (simple and container ones) and a way for
their recursive organization into a single nested structure, as
well as a software interface (API) for generating fragments
of abstract interfaces. The View component is implemented
by the system View agent. Its main function is to create a
description of a specific interface based on the description of
an abstract interface and on rules of mapping from later to
former. The Controller component is represented by agents
which play the role of an Interface Controller being a part of
various problem solvers. These agents interact with the View
agent by exchanging messages using specific templates and
implement necessary processing logic.

IV. CONCEPTUAL ARCHITECTURE OF DEVELOPMENT
TOOLS

A comprehensive solution to the problem of the intelligent
service viability also means providing the viability of the
tools with which the service is created and maintained. As
a rule, the toolkit is maintained by its developers, but it
must also be maintained by the KBS developers [12]. For
the successful implementation of this requirement, a three-tier
toolkit architecture is proposed, consisting of the Toolkit Core,
the Basic Toolkit and the Extensible Toolkit.

The Toolkit Core implements the basic principle of the
construction of all components and includes the model descrip-
tion language, the model editor, the generator of component
editors. The declarative language for model description is
used to create component models, regardless of component’s
purpose. The component model editor allows developers to
create models in simple and convenient way. The generator is
designed to automatically build declarative component editors
by component models (ontologies). It is responsible for gen-
erating the UI and the component formation scenario which
includes checking the context conditions specified in the model
and the completeness of the component. The Toolkit Core is
sufficient for creating and controlling all intelligent service
declarative components by their models.

The main task of the Basic Toolkit is to provide the
developer with a set of tools for creating software components,
assembling and binding them with information components,
launching, and organizing infrastructure at all levels of the
toolkit. Since all components are formed according to their
structural declarative models, this level of toolkit includes
component editors that are generated automatically. In addition
to the elements mentioned above, it contains external software
for creating the intelligent service UI and the imperative part
of the aforementioned components.

The Extensible Toolkit is primarily intended for KBS de-
velopers, who can expand it with new convenient tools for



maintenance of KBSs developed by them and with specialized
or universal shells of expert systems. The expansion may
be carried out using the Toolkit Core, the Basic Toolkit,
as well as with the tools and instrumental mechanisms of
the Extensible Toolkit itself. This way, recursive use of its
developed components is achieved.

The three-tier architecture forms the basis of the IACPaaS
cloud platform (https://iacpaas.dvo.ru) [13], which is available
for use by all developers of KBSs and their components.
To date, portals of knowledge on medicine, mathematics,
autonomous uninhabited underwater vehicles, diagnostics of
crops, information security, educational psychology, and pro-
gramming technology have been created on the platform.

V. CONCLUSION

The paper considers mechanisms aimed at ensuring the
viability of one class of software systems – systems with
knowledge bases. Their main difference from systems of
other classes is the presence of a knowledge base, which
is subject to continuous changes during the life cycle, and
which must be created and maintained by domain experts.
The proposed solutions are based on the model description
language developed by the authors, which provides the tools
for model specification in the form of connected labeled rooted
hierarchical binary digraphs with possible loops and cycles.
The KBS components which are built on the basis of the model
have a unified representation and internal storage format, and
are provided with a standardized and extensible set of software
interfaces for uniform access to them. Domain experts get the
opportunity to form knowledge and data bases in terms of their
concept systems but not in terms of fixed the knowledge and
data representation language. The problem solver architecture
includes declaratively represented software units, which can
constitute a dynamic configuration, interact by message ex-
change, and the structure of which is also described using a
declarative model. A unified language and a uniform internal
representation of both models and components, specified by
them, allow the use of common principles for editor generation
basing on the KBS component type. All proposed ideas are
implemented on the IACPaaS cloud platform. Herewith, tool
services providing support for the development technology are
created on the same principles as the applied services.

At the same time, the experience of platform usage and the
availability of user feedback has set a number of new scientific
problems, including the creation of language-oriented queries
to knowledge bases, methods for creating adaptive user inter-
faces of various types for KBS problem solvers and knowledge
editors. Their solution will end up as additional increasing of
the viability for this class of systems.

REFERENCES

[1] Pressman R.S. Software engineering: a practitioner’s approach.
McGraw-Hill, 7th ed., 2010. 930 p. ISBN: 0073375977.

[2] Kryazhich O.A. Obespechenie zhiznesposobnosti informacii vo vremeni
pri ee obrabotke v SPPR [Ensuring the viability of the information
during its processing in decision support systems]. Matematicheskie
mashiny i sistemy [Mathematical Machines and Systems], 2015, no.
2, pp. 170–176.

[3] Chernikov B.V. Upravlenie kachestvom programmnogo obespecheniya
[Software quality management], Moscow: Forum-Infra-M, 2012. 240 p.

[4] Yu-Cheng Tu. Transparency in Software Engineering. A thesis submitted
in fulfillment of the requirements of Doctor of Philosophy in Electrical
and Electronic Engineering. The University of Auckland. New Zealand,
2014. 337 p.

[5] Rybina G.V. Intellektual’nye sistemy: ot A do YA. Seriya monografij
v trekh knigah. Kn. 3. Problemno-specializirovannye intellektual’nye
sistemy. Instrumental’nye sredstva postroeniya intellektual’nyh system
[Intelligent systems: A to Z. A series of monographs in three books.
Book 3. Problem-specialized intelligent systems. Tools for building
intelligent systems], M.: Nauchtekhlitizdat, 2015. 180 p.

[6] Emmanuel C. Ogu, Adekunle, Y.A. Basic Concepts of Expert System
Shells and an Efficient Model for Knowledge Acquisition. Intern. J. of
Science and Research Intern. Journal of Science and Research (IJSR),
India Online ISSN: 2319-7064, 2013, vol. 2, issue 4, pp. 554–559.

[7] Rybina G.V. Intellektual’naya tekhnologiya postroeniya obuchayushchih
integrirovannyh ehkspertnyh sistem: novye vozmozhnosti [Intelligent
technology for construction of tutoring integrated expert systems: new
aspects]. Otkrytoe obrazovanie [Open Education], 2017, vol. 21, no 4,
pp. 43–57.

[8] Golenkov V., Gulyakina N., Grakova N., Davydenko I., Nikulenko V.,
Eremeev A., Tarasov V. From training intelligent systems to training
their development tools. Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies for
intelligent systems], 2018, pp.88–98.

[9] Ontology Tools. Available at: http://wiki.opensemanticframework.org/
index.php/Ontology Tools (accessed 2019, Jan).

[10] Gribova V.V., Kleshchev A.S., Moskalenko F.M., Timchenko V.A. A
Two-level Model of Information Units with Complex Structure that
Correspond to the Questioning Metaphor. Automatic Documentation and
Mathematical Linguistics, 2015, vol. 49, no. 5, pp. 172–181.

[11] Gribova V.V., Kleshchev A.S., Moskalenko F.M., Timchenko V.A. A
Model for Generation of Directed Graphs of Information by the Directed
Graph of Metainformation for a Two-Level Model of Information Units
with a Complex Structure. Automatic Documentation and Mathematical
Linguistics, 2015, vol. 49, no. 6, pp. 221–231.

[12] Musen M. The protégé project: a look back and a look forward.
Newsletter AI Matters, 2015, vol. 1, iss. 4, pp. 4–12.

[13] Gribova V., Kleschev A., Moskalenko P., Timchenko V., Fedorischev L.,
Shalfeeva E. The IACPaaS cloud platform: Features and perspectives.
Computer Technology and Applications (RPC), 2017 Second Russia and
Pacific Conference on. IEEE, 2017, pp. 80–84.

МЕТОДЫ И СРЕДСТВА ПЛАТФОРМЫ IACPAAS
ДЛЯ СЕМАНТИЧЕСКОГО ПРЕДСТАВЛЕНИЯ
ЗНАНИЙ И РАЗРАБОТКИ ДЕКЛАРАТИВНЫХ

КОМПОНЕНТОВ ИНТЕЛЛЕКТУАЛЬНЫХ
СИСТЕМ

В.В. Грибова, А.С. Клещев, Ф.М. Москаленко, В.А.
Тимченко, Л.А. Федорищев, Е.А. Шалфеева

Лаборатория интеллектуальных систем,
Федеральное государственное бюджетное учреждение
науки Институт автоматики и процессов управления
Дальневосточного отделения Российской академии

наук,
г. Владивосток, Российская Федерация

В работе обсуждается проблема обеспечения жиз-
неспособности интеллектуальных систем – систем с
декларативными базами знаний. Рассмотрены инстру-
ментальные программные средства для разработки си-
стем данного класса, реализующие механизмы повыше-
ния их жизнеспособности. Эти механизмы основаны на
построении каждого компонента по его декларативной
модели, специфицируемой на едином языке описания
моделей.


