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Abstract
A first-principle simulation of the surface diffusion of an extra metal (Me) adatom has been
performed on the corresponding 1/3 monolayer (ML) Si(111)

√
3 ×

√
3 Me-induced surfaces.

Using the nudged elastic band (NEB) optimization method, the minimum energy paths and the
activation energy barrier profiles for all known Me-inducing

√
3 ×

√
3 reconstruction on an

Si(111) surface at the 1/3 ML coverage have been obtained and compared with the available
experimental data. The activation barrier is shown to depend on the atomic size of the
diffusing adatom: the barrier has the highest value for the largest Me adatom, Pb (0.44 eV);
lower values for the smaller Me adatoms, Sn (0.36 eV), In (0.22 eV) and Ga (0.13 eV); and the
lowest value for the smallest Me adatom, Al (0.08 eV). The Arrhenius pre-exponential factors
that were obtained in the harmonic approximation are as large as ∼ 1011−13 Hz for all of the
investigated surfaces, which supports the single-adatom diffusion model considered here.

PACS numbers: 68.35.bg, 68.55.Ln

(Some figures may appear in colour only in the online journal)

1. Introduction

Diffusion is a transport phenomenon that attracts much
interest from experimenters and theorists because it is
responsible for different fundamental processes at the surface
of a solid and in its bulk. As shown by Brihuega et al [1],
single-adatom diffusion can be experimentally examined
with atomic resolution on an atomically clean defect-free
Pb-induced Si(111)

√
3 ×

√
3 surface. In their consequent

work, Brihuega et al [2] have identified the nature and the
adsorption sites of the additional Pb adatoms and accurately
determined the diffusion parameters of one extra Pb adatom
on this surface. The measurement of the hopping rates over a
temperature range from 145 to 165 K provided the activation
energy value Ed = 0.45 ± 0.01 eV and the Arrhenius prefactor
ν0 = 1013.0±0.4 Hz. The question is whether the diffusion
mechanism is as simple as that deduced from the scanning
tunneling microscopy (STM) images. Can other atoms
contribute to the atomic diffusion that was observed in

the STM? The experimental data cannot provide a clear
answer to this question: in general, only notably accurate,
time-consuming simulations can clarify the mechanism that is
actually responsible for the observed diffusion phenomenon.
This paper investigates the mechanism of a single extra metal
(Me) adatom diffusion on all known Me-induced Si(111)
√

3 ×
√

3 surfaces with identical structure, which are formed
at 1/3 ML of a monolayer (ML) of Me coverage, using modern
density functional theory (DFT) simulation tools.

The Si(111)
√

3 ×
√

3 1/3 ML Me-induced surface that
was chosen for the investigation is a notably popular
model system, and it might be expected to be one of
the best-understood reconstructions in surface science. In
the

√
3 ×

√
3 1/3 ML structure, there is one Me adatom

among three neighbouring T4 sites of the bulk-terminated
Si(111)-1×1 layer, which occupies the threefold symmetric
T4 site above the second-layer Si atoms, as shown in figure 1.
This type of structure is formed on the Si(111) surface by
group-III Me atoms (Al, In, Ga), group-IV Me atoms (Pb and
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Figure 1. Structural model of the Me-induced Si(111)
√

3 ×
√

3
surface with Me adatoms occupying the T4 cites. The Me atoms are
depicted with large black circles, the topmost Si atoms of the first
layer are depicted with large yellow circles, the second-layer Si
atoms are depicted with grey circles and the fourth-layer Si atoms
are depicted with small cyan circles. The adsorption sites T1, T4 and
H3 are marked with text labels.

Sn) and a group-V Me atom (Bi) [3]. The structure of this
type of surface reconstruction has been known since the end of
the last century because of a number of pioneering theoretical
papers of Chelikowsky [4] and Northrup [5] for Al; Meade
and Vanderbilt [6], and Zegenhagen et al [7] for Ga; Nicholls
et al [8] for In; Chan et al [9] for Pb; Ramchurn et al [10] for
Sn; and Cheng and Kunc [11] for Bi. The theoretical papers
supported a large amount of experimental observations that
were accumulated by that time [3].

The theoretical diffusion parameters, such as the
activation energy and especially the Arrhenius prefactor,
which is determined from the phonon frequencies, are notably
dependent on the calculation details such as the precision
and the exchange correlation potential. The local density
approximation (LDA) usually results in a realistic description
of the structural, elastic and vibrational properties, but
the binding and cohesive energies are often overestimated.
The generalized gradient approximation (GGA) gives a
more realistic description of the energy barriers in the
dissociative adsorption of hydrogen on Me and semiconductor
surfaces [12, 13]. In some cases, LDA calculations yield better
consistency with the experiments than GGA calculations [14,
15]. For example, in the case of Si surfaces, this is simply
an artefact of a delicate balance between the exchange and
the correlation, which results in a large error compensation.
It is sometimes difficult in advance to choose between the
LDA and the GGA exchange-correlations, particularly if there
are different available GGA types. Different modifications of
GGA have usually been used to simulate the adsorption of Me
on silicon surfaces, but LDA is also known to provide notably
correct results in many cases. For example, Chan et al [9]
used LDA to study the stability of different structures that
were formed with Pb adatoms on an Si(111) surface, whereas
Jia et al [16] used the GGA PW91 to simulate the Pb Me
films. Northrup [5, 17] applied a simple LDA approach in
his pioneering papers to calculate the Si(111)

√
3 ×

√
3–Al

surface structures, whereas Teng et al [18] preferred to use
the GGA for a ML Al film investigation. Dai et al [19] used

LDA to study the atomic structures of an In atom on an
Si(100)-2×1 surface, Ervin et al [20] used LDA to simulate
a Ga vacancy interaction on an Si(112) surface and Yeom
et al [21] used GGA to calculate the electronic structure of
Ga overlayers on Si(111) surfaces. Profeta et al [22] used
LDA to study Sn alloying on an Si(111) surface and revealed
the importance of the many-body electron correlation effects
for Sn/Si(111) and Sn/Ge(111) systems. Koroteev et al [23]
used LDA to investigate ultrathin Bi films, and Cheng and
Kunc [11] used LDA to investigate the structure and the
stabilities of Bi layers on Si(111) and Ge(111) surfaces,
whereas Owen et al [24] used the GGA PW91 to simulate
a Bi nanoline on an Si(100)-p(2 × 2) surface. It is often
highly recommended to perform a test of the dependence
of the calculation results on the chosen exchange-correlation
potential because the calculation results also depend on the
quality and the transferability of the pseudopotentials [25]. To
examine the influence of the exchange correlation functional
used for the calculations, the dependence of the obtained
results on the choice of the form of the exchange-correlation
potential is briefly investigated at the end of section 3.2.

2. Methods of calculations

The plane-wave total energies in this work were
calculated using the Vienna Ab Initio Simulation Package
(VASP) [26–29] based on the DFT [30, 31]. The electronic
ground state of the system was calculated using the
projector-augmented wave [32, 33] potentials as provided
in VASP. The LDA after Ceperley–Alder [34] in the
Perdew–Zunger parameterization [35] for the exchange and
correlation functional was employed.

The supercell geometry of a repeating slab separated by
a vacuum region, which was not less than 10 Å, was used
in this study. Each slab comprises six atomic layers of Si
and one Me adsorbate layer on the top surface. All atoms
were allowed to relax except the bottom two silicon layers,
which were constrained to remain in bulk-like positions.
H atoms were attached to the bottom-layer Si atoms to
saturate their dangling bonds. The activation energies for an
extra Me adatom diffusion were calculated using the nudged
elastic band (NEB) method [36, 37], which calculates the
diffusion barrier between two known minimum energy sites
by optimizing the number of intermediate images or snapshots
of the adatom along the diffusing path. To ensure the
continuity of the path, a spring interaction between adjacent
images is added, which forms an elastic band. To calculate the
barrier, the atomic positions in each image are fully relaxed
until a force convergence to 10−2 eV Å−1 is achieved, and
the image that corresponds to the highest energy is taken to
be the top of the diffusion path. Because the reaction path
shape is not linear, a climbing-image NEB method was used
to search for the saddle points [38], where the highest-energy
image is driven up to the saddle point. Because the accuracy of
the determination of the first-order transition state (FOTS) is
important for the prefactor calculation, the dimer method [39,
40] was applied to find them.

The wave functions were expanded using a plane-wave
basis with an energy cutoff Ecut > 250 eV, and the ‘accurate’
value of the precision-control tag provided by VASP was used.
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(a) (b)

Figure 2. (a) The minimum energy path of the extra Pb adatom diffusion on the Pb-induced Si(111)
√

3 ×
√

3 surface, which was obtained
using NEB optimization, and (b) the corresponding energy profiles for the 2

√
3 × 2

√
3 and 4

√
3 × 4

√
3 supercells. The designations are

identical to those in figure 1.

The Brillouin zone integration was performed with a 0-point
for the large supercells 4

√
3 × 4

√
3 and 6

√
3 × 6

√
3 and with

a series of k-points that originated from the 1-one (0.25, 0.25,
0) for the smaller supercell 2

√
3 × 2

√
3. The geometry was

optimized until the total energy converged to 10−4 eV and the
total force converged to 10−2 eV Å−1. The dependence of the
activation energy on the kinetic energy cutoff, the k-points
number and the number of Si layers was examined and found
to have a negligible effect on the total energy differences.
The dependence of the activation energy on the number of
√

3 cells in the supercell was also investigated, which showed
that a 4

√
3 × 4

√
3 supercell size was sufficiently large for all

calculations (see section 3.1).

3. Results and discussion

3.1. Choice of the supercell size

Because all of the Me-induced Si(111)
√

3 ×
√

3 surfaces
for Me = Al, Ga, In, Sn, Pb and Bi have identical atomic
arrangement, an identical atomic model, which is shown in
figure 1, can be used to simulate their extra Me adatom
diffusions. To check the dependence of the activation energy
on the size of the supercell, a series of NEB calculations of
the diffusion of an extra Pb adatom on an Si(111) N

√
3 ×

N
√

3–Pb supercell was performed, where N = 2, 4 and 6.
The extra Pb adatom was moving from one equilibrium T4

position to the neighbouring T4 site through a number of
snapshots that lay on the straight line that connected these
two positions. The initial straight-line path after the NEB
optimization was transformed to a curve that passed around
the first-layer Si atom T1 through the hollow H3 site, as
shown in figure 2(a). All calculations were performed using
different sets of k-points that originated from the 1-one at
(0.25, 0.25, 0) and the 0-point at (0, 0, 0). Table 1 summarizes
the resulting activation energies, which were calculated as the
difference between the total energies of the system with the
extra Pb adatom in the saddle point and those of the system
with the extra Pb adatom in the equilibrium T4 position.

Table 1. The dependence on the supercell size of the activation
energies (in eV) for an extra Pb adatom diffusion on the Pb-induced
Si(111)

√
3 ×

√
3 surface.

Supercell size 2
√

3 × 2
√

3 4
√

3 × 4
√

3 6
√

3 × 6
√

3

k-points set 2 × 2 1 × 1 1 1 × 1 1 1
k-points origin 1 1 0 1 0 0
Energy barrier (eV) 0.44 0.43 0.39 0.44 0.44 0.45

We observe that even when the supercell is as small as 2
√

3 ×

2
√

3, the activation energy is almost identical to that for larger
supercells such as 4

√
3 × 4

√
3 and 6

√
3 × 6

√
3. Because

the 0-point calculations give notably reasonable results for
large supercells, the 0-point calculations were performed for
the 4

√
3 × 4

√
3 supercell to simulate the extra Me adatom

diffusion.

3.2. Saddle points and transition states calculation

Independently of the form of the initial trial path, the resulting
NEB-optimized path of the extra Me adatom diffusion goes
around the first-layer Si atom T1 through the hollow H3

site similarly to the path shown in figure 2(a). For ease of
visualization, the distances traversed by the extra Me adatom
were projected to the line that connected the neighbouring
T4 sites, so that the entire distance was equal to the Si
surface lattice period 3.82 Å, which was provided by the
corresponding LDA exchange-correlation potential. The path
obtained after only six to eight images from the linear trial
path reproduces the main diffusion profile features such as the
location and the energy of the transition states. The diffusion
path retains a reflection symmetry about the plane that passes
through the occupied T4 sites perpendicular to the path (the
red line in figure 3(a)) because all of the investigated Si(111)
√

3 ×
√

3–Me surfaces have the same symmetry. The saddle
points are also symmetrical about this plane, and they are
separated from one another by 0.6–0.8 Å for the larger Me
adatoms such as Pb, Sn and In and by 2.2–2.6 Å for the
smaller Me adatoms such as Ga and Al.
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(a) (b)

Figure 3. (a) The minimum energy path of the extra Me adatom diffusion on the corresponding Me-induced Si(111)
√

3 ×
√

3 surface,
which was obtained using NEB optimization, and (b) the corresponding energy profiles. The designations are identical to those in figure 1.

The diffusions of all extra Me adatoms under
consideration have similar features, and using more images
does not considerably affect the form of the diffusion path or
the position of the saddle points, as observed in figure 3(b).
In figure 3(b), the diffusion paths on the left of the symmetry
plane were obtained using a sparse NEB grid, whereas the
diffusion paths on the right of the symmetry plane were
obtained using a fine NEB grid that contained 16–24 images.
The resulting diffusion paths that were obtained for the
maximum number of the NEB images almost coincide with
the paths obtained using the grid with fewer images. The
difference in the saddle point positions that were obtained
using different NEB grids is less than 0.05 Å, and the
difference between their energies is less than the error in
the DFT calculations. The calculated activation energy
barrier height for the extra Pb adatom is consistent with
the experimental data obtained by Brihuega et al [2], which
supports the single-adatom diffusion mechanism considered
in this work. Similar calculations of the diffusion barriers of
the other extra Me adatom diffusion give smaller activation
energies for the smaller Me adatoms: Sn (0.36 eV), In
(0.22 eV), Ga (0.13 eV) and Al (0.08 eV). Unfortunately,
there are no experimental data for metals other than Pb with
which to compare these values. However, the consistency
between the calculated data and the experiment in the Pb case
gives hope that the obtained results can predict the behaviour
of the other extra Me adatoms on the similar surfaces.

Because the accuracy of the determination of the
saddle point is important for FOTS calculations, the
dimer method [39, 40] was used to search for the exact
positions of the saddle points. This method gives an energy
within ±0.5 meV of that obtained using the climbing NEB
calculations, and the positions are within 0.05 Å for all
investigated metals except Al. For the extra Al adatom
diffusion, the uncertainty of the saddle point locations is
higher (≈ 0.1 Å) because of the high mobility of the loosely
bonded Al adatoms, but the uncertainty of their energies
remains less than 0.5 meV. The diagonalized force constant
matrix D =‖ M−1/2

i 8i, j M−1/2
j ‖ that was calculated at all

Table 2. The dependence of the activation energy barrier height
(eV) on the exchange-correlation potential that was used. In the last
column, the minimal Me–Me dimer length (Å), which was attained
at the middle of the diffusion path, is shown.

Exchange-correlation potential

Dimer
Adatom LDA GGA PW91 GGA PBE GGA PBEsol length

Pb 0.44 0.42 0.42 0.42 3.05
Sn 0.36 0.34 0.35 0.33 2.95
In 0.23 0.21 0.21 0.22 3.0
Ga 0.13 0.11 0.12 0.13 2.6
Al 0.08 0.05 0.03 0.07 2.6
Bi −1.55 – – – 2.95

of these saddle points has one negative value, which proves
that these saddle points are true FOTSs.

As we can see in figure 3(b), two saddle points in the
energy profile curves are separated from each other by a
plateau, whose length is varied from ≈ 0.8 Å for the largest
adatom Pb to ≈ 2.6 Å for the smallest adatom Al. The
diffusion process is accompanied by the breaking of an Me–Si
bond and an appreciable increase in the total energy from
the minimal value to the maximal value when the extra
Me adatom moves from the equilibrium T4 position to the
first saddle point. Subsequently, an Me–Me dimer is formed,
whose bond length is determined by the Me atomic size and
the energy that passes through the maximum value. For larger
Me adatoms such as Pb, Sn and In, the Me–Me dimer length
is ≈ 3.0 Å; for smaller Me adatoms such as Ga and Al, it is
≈ 2.6 Å, as shown in table 2. Thus, because the smaller Me
atoms can come closer to each other without considerable
repulsion, the corresponding energy barrier is smaller, and the
distance between the saddle points is much larger. After the
extra Me adatom passes the second saddle point, the reverse
process takes place: the Me–Me dimer is broken, and a new
Me–Si bond is formed with a consequent decrease in energy
to the corresponding minimum value. Thus, the distance
between the saddle points is determined by the minimum
possible distance between two Me adatoms: the moving Me
adatom and the closest Me adatom in the T4 position.

4
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(a) (b)

Figure 4. (a) The structure of the optimized Bi-induced Si(111)
√

3 ×
√

3 1/3 ML surface with one extra Bi adatom and (b) the structure of
the optimal Bi-induced Si(111)

√
3 ×

√
3 1 ML surface.

The behaviour of the extra Bi adatom on an Si(111)√
3 ×

√
3–Bi surface is completely different and cannot be

compared with the other extra Me adatom diffusion. The main
reason is that a shift of the extra Bi adatom to the centre of
the diffusion path, which is accompanied by a Bi–Bi dimer
formation (see figure 4(a)), results in an appreciable dip in the
energy. This energy is 1.55 eV lower than the energy of the
state with the extra Bi adatom in the T4 site, which implies
that the T4 site state is not a ground state for the Si(111)√

3 ×
√

3–Bi surface with an extra Bi adatom. This finding is
supported by the calculations of the magic layer thickness in
Bi ultrathin films on Si(111) surfaces by Saito et al [41]. They
demonstrated that the most stable geometry of the β-phase
of the Si(111)

√
3 ×

√
3–Bi surface is the so-called milkstool

structure, which consists of Bi trimers centred at the T4

sites, as shown in figure 4(b). Because the milkstool structure
has three Bi atoms per

√
3 ×

√
3 cell, whereas the 1/3 ML

structure that has been considered has one Me adatom, we
can compare their formation energies using only the cohesive
energy of bulk Bi µBi:

1E = E4
√

3×4
√

3−1/3 ML+Bi adatom + 1n µBi − E4
√

3×4
√

3−1 ML,

(1)
where 1n is the difference between the number of Bi adatoms
in the

√
3 ×

√
3-1/3 ML and the

√
3 ×

√
3-1 ML surface

structures.
The calculation shows that the milkstool structure is more

favourable by 1E = 0.55 eV per 1 × 1 cell than the
√

3 ×√
3 1/3 ML structure with an extra Bi adatom. Thus, the Bi

adatoms prefer to form dimers, as in our case of the extra Bi
adatom on the 1/3 ML

√
3 ×

√
3 surface. We can expect that

this peculiarity is intrinsic to Bi. Indeed, the calculation of the
milkstool structure for the other metals with one ML coverage
on the Si(111)

√
3 ×

√
3 surface shows that the trimmers

break and the Me adatoms become chaotically disordered.
The dependence of the diffusion on the

exchange-correlation potential was investigated by
performing a series of GGA calculations for the PW91 [42],
PBE [43] and PBEsol [44] exchange correlations. The form
of the reaction path and the energy barrier profiles are almost
identical to those obtained using the LDA functional, which

Table 3. The dependence of the prefactor logarithm on the atomic
displacement 1u (1xi , 1yi , 1zi ) and the kinetic energy cutoff
Ecut.

Displacement (Å) Prefactor logarithm

1xi = 1yi = 1zi Ecut = 300 eV Ecut = 350 eV Ecut = 400 eV

0.005 28.9 27.3 28.7
0.01 28.5 28.8 28.4
0.02 27.8 27.7 27.7
0.03 27.6 27.5 27.6
0.04 27.4 27.7 –

are shown in figure 3. In table 2, the height of the activation
barriers are compared based on the exchange-correlation
types. We observe that the GGA functional gives a smaller
value for the activation energy for all of the considered extra
Me adatom diffusions. The overall difference in the activation
barrier value given by the different exchange-correlation
potentials is not more than 0.03 eV for all considered Me
adatoms. Although this difference is quite large for the lighter
Me adatom—it constitutes one-third of the activation barrier
heights for the Al adatom diffusion. In the latter case, the
GGA can be expected to give worse results than the LDA.
Regarding the Sn adatom, Flores et al [45] and Ortega
et al [46] showed the importance of many-body electron
correlations in the Si(111)

√
3 ×

√
3 Sn-induced surface.

They demonstrated that the correlations leads to the formation
of a stable narrow-gap Mott–Hubbard insulating state. The
inclusion of the on-site Coulomb interaction L(S)DA+U with
the parameters U = 1.5 eV and Jnn = 0.35 eV, which were
reported by Ortega et al [46], slightly enlarges the activation
barrier heights to 0.37 eV, which is not too different from the
initial LDA results.

3.3. Phonon calculations

The prefactor calculation is one of the most challenging
tasks in surface dynamics. As seen from equation (A.2),
the calculation requires very precise values of the phonon
frequencies because they enter the prefactors factors
exponentially. The calculation also requires a sufficiently

5
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Table 4. The dependence of the prefactor logarithm that was obtained for the atomic displacement 1xi = 1yi = 1zi = 0.005 Å and the
kinetic energy cutoff Ecut = 300 eV on the number of moving atoms, which were taken for the phonon calculations.

Number of atoms 1 2 5 7 27 50 100 150 209

Prefactor logarithm 27.4 27.6 27.6 27.5 27.7 28.0 28.6 28.7 28.9

large number of degrees of freedom (the moving atoms)
because the number of factors in the prefactor is equal to
the number of degrees of freedom. A high precision of
the calculated prefactor is often not necessary because its
precise experimental measurements are difficult and generally
performed in a narrow temperature range, where the error
is deliberately larger than the calculated values. As shown
in the appendix, the prefactor for a single-atomic diffusion
is several orders of magnitude larger than the prefactor for
a collective-atomic diffusion. Therefore, the precision of
one–two orders of magnitude would be sufficient to clarify
the diffusion mechanism.

The prefactor was calculated using equation (A.2), which
contains the vibrational frequencies of all relaxing (not
fixed) atoms in the ground equilibrium state and in the
FOTS. The temperature in equation (A.2) was the average
of the temperatures that were used by Brihuega et al [2] to
experimentally determine the prefactor T =

165+145
2 K for the

extra Pb adatom diffusion on the corresponding Pb-induced
Si(111)

√
3 ×

√
3 surface. The dependence of the calculated

prefactor logarithm on the kinetic energy cutoff and the value
of the atomic displacements used for calculations are shown
in table 3. The logarithm of the prefactor, which is given by
the atomic displacements in the range 0.005–0.03 Å, is within
27.3–28.9. The corresponding prefactor value varies within
1–3×1012 Hz, which is of the same order of magnitude as the
experimental value 1013.0±0.4 Hz. Similar to its dependency
on the atomic displacements value, the prefactor logarithm
depends on the number of the moving atoms that were taken
for the phonon frequency calculation, as shown in table 4,
which introduces an error of the same order of magnitude.
In table 5, to eliminate the additional error introduced by
the small number of considered phonon frequencies, the
prefactors were obtained for all relaxing (not fixed) atoms that
were taken for the phonon calculations.

Thus, by considering the contributions of all moving
atoms, we obtained the correct order of magnitude of the
Arrhenius prefactor for the extra Pb adatom diffusion on the
corresponding Si(111)

√
3 ×

√
3–Pb surface. Because of

the precision of these calculations, the prefactor values cannot
be compared quantitatively, but such precision supports
the assumed mechanism of the single-atomic diffusion for
the experimentally observed extra Pb adatom movement.
Otherwise, the prefactor value would be different from the
experimental value by several orders of magnitude. The
prefactor that was calculated for the other Me adatoms using
the same technique is also in the same order of magnitude of
∼ 1011−13 Hz, as shown in table 5. It appears that the exchange
correlation potential appears does not considerably affect the
prefactor values.

From the calculated vibration frequencies, we can
estimate the contribution of the zero-point phonon effect to the
activation energy using the following approximations for the
zero-point energies of the equilibrium state and the transition

Table 5. The dependence of the prefactor on the
exchange-correlation potential. The prefactor was obtained for the
atomic displacement 1xi = 1yi = 1zi = 0.01 Å and the kinetic
energy cutoff Ecut = 300 eV.

Exchange-correlation potential

Adatom LDA GGA PW91 GGA PBE GGA PBEsol

Pb 2.4 × 1012 6.2 × 1011 1.3 × 1012 1.7 × 1012

Sn 2.8 × 1012 1.1 × 1012 1.3 × 1012 1.2 × 1012

In 7.1 × 1011 4.2 × 1012 5.9 × 1012 3.4 × 1011

Ga 7.9 × 1011 8.1 × 1011 7.9 × 1011 7.7 × 1011

Al 9.9 × 1011 1.0 × 1012 9.8 × 1011 –

states: E0 =
∑3N

i=1
h̄ωi

2 and ET =
∑3N−1

i=1
h̄ω∗

i
2 , respectively.

The zero-point phonon effect contribution |E0 − ET | varies
from 2 meV for the Al adatom to l4 meV for the Sn adatom for
Ecut = 300 eV and atomic displacement 1xi = 1yi = 1zi =

0.01 Å. This low contribution of the phonon energy to the total
energy difference indicates that the NEB optimized transition
states are near the true saddle point with the minimal energy.

4. Conclusion

The DFT calculations of the extra Me adatom diffusion
on the corresponding Me-induced Si(111)

√
3 ×

√
3 surface

demonstrate that the height of the activation energy barrier
strongly depends on the Me atomic radius. The larger Me
adatoms cannot approach one another without considerable
repulsion, which is followed by an increase in the total
energy. The minimum Me–Me distance is as much as about
3.1 Å for the largest (Pb) Me adatoms and as little as
about 2.6 Å for the smallest (Al) Me adatoms. The smaller
adatoms are more mobile, and the corresponding activation
energy barriers are appreciably smaller and wider. The
barrier consists of two saddle points that are separated by
approximately 2.5 Å for the smaller Me adatoms such as
Al and Ga and 0.6–0.8 Å, for the large Me adatoms such
as Pb. The Arrhenius prefactors, which were obtained with
different precisions and atomic displacements in different
exchange-correlation approximations, are ∼ 1011−13 Hz for
all investigated surfaces. This result supports the considered
single-adatom diffusion model.
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Appendix. Diffusion parameters calculation

Diffusion can be simply classified as either interstitial or
substitutional based on the location of the impurity atom.
Interstitial diffusion is usually representative for the bulk
solid, whereas substitutional diffusion more often occurs at
the surface because the atoms move from one atomic site to
another. In a perfect lattice, this diffusion would require the
atoms to swap places within the lattice. A straight-forward
swapping of atoms would require a lot of energy because the
swapping atoms would need to physically push other atoms
out of the way to swap places. In practice, a substitutional
diffusion occurs only if there are vacancies at the surface.
If a vacancy is present, one of the adjacent atoms can move
into the vacancy and creates a vacancy in its original site.
Diffusion through one vacancy is said to be vacancy mediated.
Such diffusion is responsible for the mobility of In adatoms on
a Cu(100) surface [47], the mass transport between adatom
islands on Cu(001) [48] and the Me–Si adatom exchange on
Me-induced Si(111)

√
3 ×

√
3 surfaces [49].

One key characteristic of diffusion is the number
of participating atoms, which is difficult to detect using
modern experimental techniques such as STM. For example,
in the orchestrated exchange discovered by Kaxiras and
Erlebacher [50], the number of atoms participating in the
diffusion is much larger than the number of atoms that
are seen moving in the STM. The orchestrated exchange
mechanism implies a division of adatoms into three types:
‘spectators’, ‘enablers’ and ‘movers’. The ‘spectators’ do not
participate in the exchange but they are necessary for the
diffusion to occur. The ‘enablers’ must move for the exchange
to occur, but they end up in the same position after the
exchange, being indistinguishable experimentally. Hence, the
only visible moving adatoms are the ‘movers’, which end
up in different positions after the exchange. If the energy
dissipation rate is nearly constant, and the dissipation of the
extra thermal energy is sufficiently fast, then the adsorbate
particle will vibrate near a nearest-neighbour site and the
jump length distribution should be an exponentially decaying
Arrhenius function of the distance:

ν = ν0e−Ed/kT , (A.1)

where ν is the adatom hopping rate, Ed is the diffusion
activation energy, k is the Boltzmann’s constant, T is the
temperature and ν0 is the pre-exponential factor or the
prefactor.

The Arrenius prefactor ν0 can be regarded as a
simple indicator of the diffusion mechanism because it is
proportional to the diffusion probability. The probability of
the collective-atomic diffusion Pcollective is clearly defined by
the product of the diffusion probabilities Padatom of every
adatom movement that participates in the diffusion:

Pcollective ∼ Padatom1 · Padatom2 · Padatom3 · · · .

Hence, the probability of the collective diffusion must be
several orders of magnitude smaller than the probability
of a single-atomic diffusion. In practice, only accurate,
time-consuming calculations can give reliable values of the
prefactor that is directly comparable with the experimental

values, and only the present state of development of
supercomputing facilities allows us to perform such
calculations.

The quantum mechanical solution of the harmonic
oscillator yields the harmonic transition state theory (hTST)
jump rate:

ν0 =
kT

h

∏3N
i=1

(
1 − e

−h̄ωi
kT

)
∏3N−1

i=1

(
1 − e

−h̄ω∗
i

kT

) , (A.2)

where N is the number of atoms, h(h̄) is Planck’s constant,
and ωi and ω∗

i are the real normal modes of vibration on
the ground state and the activation state, respectively. On
a saddle point, there is one fewer real normal mode than
in the ground state because the negative curvature yields
an imaginary frequency ω∗

i in the direction of the reaction
coordinate.

In the high-temperature region, i.e. kT � h̄ω,
equation (A.2) becomes the result of Vineyard [51] for
the classical harmonic oscillator:

ν0 =
kT

h

∏3N
i=1 ωi∏3N−1

i=1 ω∗

i

. (A.3)

Considering the large error of the experimentally determined
prefactor, this result appears notably acceptable. In this paper,
the unsimplified form of equation (A.2) is used to avoid any
error that is introduced by neglecting quantum effects.

Consequently, the consistency between the experimental
prefactor and the calculated prefactor for the chosen
diffusion mechanism would indicate that the chosen
mechanism is correct. However, the prefactor calculation is
notably time-consuming because the number of factors in
equations (A.2)–(A.3) is equal to the number of degrees
of freedom, which is three times greater than the number
of relaxing atoms, and each of these factors needs a
separate self-consistent calculation at a fixed geometry.
Sometimes, one confines oneself to several terms of this
product [52], which can be justified by the low precision
of the experimentally determined prefactor with which the
calculated value is compared.

All phonon frequencies in equation (A.2) were calculated
using the harmonic approximation in the Born–von Karman
theory, where the total energy of a system is expanded in the
atomic displacement, and only the linear terms are preserved:

E = E0 +
∑

i

fi ui +
1

2

∑
i, j

8i, j ui u j , (A.4)

where ui is the atomic displacement, E0 is the total
energy at zero atomic displacement and fi is the Cartesian
component of the force that acts on the i th atom, which
is equal to zero in mechanical equilibrium. The index i in
equations (A.2) and (A.4) refers to all degrees of freedom
of all non-fixed atoms in the cell. The matrix 8 =

∥∥8i, j

∥∥ is
the force constant matrix that defines the dynamical matrix
D =‖ M−1/2

i 8i, j M−1/2
j ‖, where Mi is the mass associated

with the i th atom. Diagonalizing matrix D, we obtained
the squares of all phonon frequencies that enter into
equation (A.2) using VASP transition state theory tools2. The

2 Vasp TST tools: http://theory.cm.utexas.edu/vtsttools.
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number of real and imaginary frequencies can be used as a
direct criterion of the accuracy of the ground state and the
FOTS calculations.
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