Меню
E-mail
RU
EN
Login
Main
About institute
History notes
Награды, премии, почетные звания
Академики, члены-корреспонденты РАН
Video
Документы
Organization details
News
Structure
Management
Management department
Science departments
Multiple Access Centers
Support departments
Public organizations
People
Science
Main research areas
Research projects
Main results
Practical results
Conferences
Competitions
Seminars
Announcements of scientific events
Список публикаций
Academic Council
Dissertations
Объявления о защите
005.007.01
005.007.02
See Russian version.
Theses prepared for submission
Postgraduate
Fields of study
Междисциплинарная кафедра подготовки кадров высшей квалификации
Admission to the postgraduate
Прием в целевую аспирантуру
Список аспирантов (на 1 октября 2024 года)
anti-corruption
Shevlyagin Aleksandr Vladimirovich
Degree:
PhD (Phys.-Math.)
Position:
senior scientific employee
Department:
Лаборатория синхротронных методов изучения свойств новых функциональных наноматериалов оптоэлектроники, нанофотоники и тераностики (№25)
Room:
329
Internal Phone:
2-68
Email:
Shevlyagin@iacp.dvo.ru
Publications:
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2013
2012
Article
Chapter
Tezis
2022. Gurbatov, S.; Puzikov, V.; Modin, E.; Shevlyagin, A.; Gerasimenko, A.; Mitsai, E.; Kulinich, S.A.; Kuchmizhak, A. Ag-Decorated Si Microspheres Produced by Laser Ablation in Liquid: All-in-One Temperature-Feedback SERS-Based Platform for Nanosensing. Materials 2022, 15, 8091
2019. Chusovitin E. et al. Embedding of iron silicide nanocrystals into monocrystalline silicon: suppression of emersion effect //Asia-Pacific Conference on Fundamental Problems of Opto-and Microelectronics 2017. – International Society for Optics and Photonics, 2019. – Т. 11024. – С. 1102402.
2017. Galkin N. G. et al. Prospects for silicon–silicide integrated photonics //Japanese Journal of Applied Physics. – 2017. – Т. 56. – №. 5S1. – С. 05DA01.
2013. Goroshko D. et al. Enhancement of near IR sensitivity of silicon‐silicide based photodetectors //physica status solidi (c). – 2013. – Т. 10. – №. 12. – С. 1844-1846.
2024.
2017. Chusovitin E. A. et al. GaSb nanocrystals grown by solid phase epitaxy and embedded into monocrystalline silicon //Scripta Materialia. – 2017. – Т. 136. – С. 83-86.
2016. Shevlyagin A. V. et al. VIS-NIR-SWIR multicolor avalanche photodetector originating from quantum-confined Stark effect in Si/β-FeSi2/Si structure //Applied Physics Letters. – 2016. – Т. 109. – №. 17. – С. 171101.
2021. Yulia Borodaenko, Sergey Syubaev, Stanislav Gurbatov, Alexey Zhizhchenko, Aleksey Porfirev, Svetlana Khonina, Eugeny Mitsai, Andrey V. Gerasimenko, Alexander Shevlyagin, Evgeny Modin, Saulius Juodkazis, Evgeny L. Gurevich, Aleksandr A. Kuchmizhak / Deep Subwavelength Laser-Induced Periodic Surface Structures on Silicon as a Novel Multifunctional Biosensing Platform // ACS Appl. Mater. Interfaces 2021, 13, 54551−54560
2023.
2019. Galkin N. G. et al. Silicon p+–p−–n Diodes with Embedded β-FeSi2 and CrSi2 Nanocrystals: Morphology, Crystal Structure and Photoelectric Properties //International Journal of Nanoscience. – 2019. – Т. 18. – №. 03n04. – С. 1940084.
2022. Stanislav O. Gurbatov, Vladislav Puzikov, Artem Cherepakhin, Eugeny Mitsai, Natalie Tarasenka, Alexander Shevlyagin, Aleksandr Sergeev, Sergei A. Kulinich, Aleksandr A. Kuchmizhak / Hybrid Au@Si microspheres produced via laser irradiation in liquid for nonlinear photonics // Optics & Laser Technology 2022, 147, 107666.
2015. Alexander Shevlyagin, Dmitry Goroshko, Evgeniy Chusovitin, Konstantin Galkin, and Nikolay Galkin. Characterization of the silicon/β-FeSi2 nanocrystallites heterostructures for the NIR photodetection at low temperature // JJAP, V.54, 07JB02 (2015)
2022.
2015. T.S. Shamirzaev, N.G. Galkin, E.A. Chusovitin, D.L. Goroshko, A.V. Shevlyagin, A.K. Gutakovski, A.A. Saranin, A.V. Latyshev. Electroluminescent 1.5-μm light-emitting diodes based on p +-Si/NC β-FeSi2/n-Si structures // Semiconductors, V.49, N.4 (2015) pp.508-512.
2017. -
2022. Transparent conducting materials (TCMs) provide low cost and effective solution for the modern optoelectronics. However, simultaneous high electrical conductivity and optical transparency in the near-infrared (NIR) and middle-infrared (MIR) spectral ranges remain challenging. This study proposes thin film of the semimetal calcium disilicide (CaSi2) with hR6 polymorph modification to fill this niche. Investigation of the electrical, magnetoresistance and magnetic properties shed light on its semimetal behavior. CaSi2 film grown on Si substrate demonstrates competitive electrical and optical properties from the NIR to MIR ranges compared to commonly used TCMs reaching maximum transmittance of 47% at an important telecommunication wavelength of 1550 nm in addition to the low sheet resistance of 6.6 Ω/sq, which results in high TCM figure of merit of 0.2 Ω−1. Moreover, demonstrated for the first time partial optical transparency of the CaSi2 in the visible range could significantly heighten its applicability for Si-based optoelectronics.
2020. n-Mg2Si/p-Si heterojunction solar cell with a 1.4 µm thick unintentionally doped (n = 3 × 1017 cm−3) silicide epitaxial layer on p-Si(1 1 1) (p = 5 × 1014 cm−3) was grown by low temperature (250 °C) molecular beam epitaxy. Heterojunction demonstrated clear rectification and zero bias photoresponse in the (400–1400) nm wavelength range at room temperature. Under AM 1.5 illumination, an open-circuit voltage of 0.21 V, a short-circuit current density of 3.3 mA/cm2, fill factor of 0.36 were obtained while the conversion efficiency reached 0.24%, which is the pioneering demonstration of Mg2Si-based solar cell operation. Combined minority-carrier lifetime, Raman and AFM mapping together with TEM and XRD data revealed that carrier dynamics and photovoltaic performance are limited by the presence of non-epitaxial Mg2Si grains in the upper silicide film layer. However, minority-carrier lifetime up to 7.3 µs for Mg2Si demonstrates its great potential as absorbing material for Si-based solar cells.
2021. Gouralnik, A. S., Shevlyagin, A. V., Chernev, I. M., Ustinov, A. Y., Gerasimenko, A. V., & Gutakovskii, A. K.. Synthesis of crystalline Mg2Si films by ultrafast deposition of Mg on Si (111) and Si (001) at high temperatures. Mg/Si intermixing and reaction mechanisms //Materials Chemistry and Physics. – 2021. – T.258. - С. 123903.
2018. Gouralnik A. S. et al. Formation of Mg2Si at high temperatures by fast deposition of Mg on Si (111) with wedge-shaped temperature distribution //Applied Surface Science. – 2018. – Т. 439. – С. 282-284.
2018. Galkin N. G. et al. Comparison of the structural, optical and thermoelectrical properties of Ca silicide films with variable composition on Si substrates //Defect and Diffusion Forum. – Trans Tech Publications Ltd, 2018. – Т. 386. – С. 3-8.
2015. Galkin N. G. et al. Semiconducting Mg2Sn and Mg2Ge nanolayers on Si (111) substrates: formation, structure and properties //PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES: PROCEEDINGS OF INTERNATIONAL CONFERENCE NANOMEETING–2015. – 2015. – С. 128-131.
2023.
2016. Галкин Н. Г. и др. Кремний-силицидные диодные гетероструктуры-основа для создания кремниевой интегральной фотоники //Вестник Дальневосточного отделения Российской академии наук. – 2016. – №. 4 (188).
2017. Goroshko D. L. et al. Photoluminescence spectroscopy investigation of epitaxial Si/GaSb nanocrystals/Si heterostructure //AIP Conference Proceedings. – AIP Publishing LLC, 2017. – Т. 1874. – №. 1. – С. 030015.
2024.
2022. N.G. Galkin, K.N. Galkin, A.V. Tupkalo, E.Yu. Subbotin, I.M. Chernev, A.V. Shevlyagin and V.V. Khovailo, Physics of the Solid State, 2022, Vol. 64, No. 12, pp. 616–623
2012. Galkin N. G. et al. Room temperature 1.5 μ m light-emitting silicon diode with embedded β-FeSi2 nanocrystallites //Applied Physics Letters. – 2012. – Т. 101. – №. 16. – С. 163501.
2017. Shevlyagin A. V. et al. A room-temperature-operated Si LED with β-FeSi2 nanocrystals in the active layer: μ W emission power at 1.5 μ m //Journal of Applied Physics. – 2017. – Т. 121. – №. 11. – С. 113101.
2016. Goroshko D. L. et al. Formation of bulk and nanocrystallite layers of GaSb on silicon //Solid State Phenomena. – Trans Tech Publications Ltd, 2016. – Т. 245. – С. 72-79.
2017. Goroshko D. L. et al. Solid phase epitaxy formation of silicon-GaSb based heterostructures //JJAP Conference Proceedings. – The Japan Society of Applied Physics, 2016. – Т. 5.
2018. Semyon A Balagan et al 2018 J. Phys.: Condens. Matter 30 245301
2024.
2015. Shevlyagin A. V. et al. Enhancement of the Si pn diode NIR photoresponse by embedding β-FeSi 2 nanocrystallites //Scientific reports. – 2015. – Т. 5. – №. 1. – С. 1-9.
2016. Goroshko D. L. et al. Extended near-IR spectral sensitivity and electroluminescence properties of silicon diode structure with GaSb/Si composite layer //Solid State Phenomena. – Trans Tech Publications Ltd, 2016. – Т. 247. – С. 61-65.
2015. N.G. Galkin, K.N. Galkin, I.M. Chernev, A.V. Shevlyagin, T.H. Stuchlikova, J. Stuchlik, Z. Remes. Mg2Si, Ca2Si and CrSi2 nanoparticles for solar cells and light emitted diodes based on hydrogenated amorphous silicon on glass substrates // Physics, Chemistry and Application of Nanostructures, NANOMEETING, 2015, 07-06, pp. 532-535.
2016. Chernev I. M. et al. On the way to enhance the optical absorption of a-Si in NIR by embedding Mg2Si thin film //Applied Physics Letters. – 2016. – Т. 109. – №. 4. – С. 043902.
2020. Terai Y. et al. Photoreflectance Spectra of Highly-oriented Mg 2 Si (111)//Si (111) Films //JJAP Conference Proceedings. – The Japan Society of Applied Physics, 2020. – Т. 8. - 011004
2013. Chusovitin E. et al. Electroluminescence properties of p‐Si/β‐FeSi2 NCs/…/n‐Si mesa diodes with embedded multilayers of β‐FeSi2 nanocrystallites //physica status solidi (c). – 2013. – Т. 10. – №. 12. – С. 1850-1853.
2017. Embedded in silicon β-FeSi2 nanocrystals (NCs) were grown on Si(111) by solid phase epitaxy of a thin iron film followed by Si molecular beam epitaxy. After solid phase epitaxy, a mixture of β-FeSi2 and ε-FeSi nanocrystals is formed on the surface, sometimes β and ε phases coexist inside one nanocrystal. During initial stage of Si molecular beam epitaxy all ε-FeSi transforms into β-FeSi2. β-FeSi2 nanocrystals tend to move following Si growth front. By adjusting growth condition, we manage to prevent the nanocrystals from moving and to fabricate 7-layer n-Si(111)/β-FeSi2_NCs/p+-Si silicon heterostructure with embedded β-FeSi2 NCs. An epitaxial relationship and a stress induced in the nanocrystals by silicon matrix were found to be suitable for indirect to direct band gap transition in β-FeSi2. Of the heterostructure, a n-i-p avalanche photodetector and a light-emitting diode were formed. They have shown relatively good performance: ultrabroadband photoresponse from the visible (400 nm) to short-wavelength infrared (1800 nm) ranges owing to quantum-confined Stark effect in the nanocrystals and optical emission power of up to 25 µW at 9 A/cm2 with an external quantum efficiency of 0.009% at room temperature owing to a direct fundamental transition in stressed β-FeSi2 nanocrystals.
2013. Gouralnik A. S. et al. Brief observe on iron silicide growth on amorphous silicon //Physica status solidi (c). – 2013. – Т. 10. – №. 12. – С. 1742-1745.
2017. Galkin N. G. et al. Study of optical and luminescence properties of silicon—semiconducting silicide—silicon multilayer nanostructures //EPJ Web of Conferences. – EDP Sciences, 2017. – Т. 132. – С. 02006.
2015. Non-doped and doped Mg stannide films on Si(111) substrates: Formation, optical, and electrical properties