ИАПУ ДВО РАН

Вопросы создания машинопонимаемых SMART-стандартов на основе графов знаний


2024

, Scopus

Article

Развитие цифровой трансформации требует широкого использования новых технологий в документах по стандартизации. Одной из задач является создание стандартов с машинопонимаемым содержанием, которые позволят использовать цифровые документы на различных этапах разработки и производства без необходимости участия человека-оператора. Целью данной работы является описание подхода для создания и перевода в машинопонимаемое представление нормативных документов отрасли для дальнейшего их использования в программных сервисах и системах. Содержимое SMART-стандарта бывает трех видов: машиночитаемое, машиноинтерпретируемое и машинопонимаемое. Для формализации данных и знаний при решении различных задач активно используются графы знаний. Предложен новый двухуровневый подход для создания и перевода в машинопонимаемое представление нормативных документов как графов знаний. Подход определяет два вида интерпретации такого документа (человекочитаемость и машинопонимаемость) через два связанных формата: граф, каждый семантический узел которого представляет текст на естественном языке, и сеть понятий и строгих связей. Каждому узлу «человекочитаемого» графа соответствует (в общем случае) поддерево машинопонимаемого графа знаний. В качестве основы для обеспечения преобразования одной формы представления SMART-стандарта в другую форму служат LLM модели, дополняемые специализированным адаптером, полученным в результате дообучения с помощью подхода Parameter-Efficient Fine-Tuning. Установлены требования к набору проблемно- и предметно-ориентированных инструментальных средств формирования графов знаний. Показана концептуальная архитектура системы поддержки решения комплекса задач на основе SMART-документов в виде графов, установлены принципы реализации программных компонентов, работающих со знаниями, для интеллектуальных программных сервисов.

10.15622/ia.23.4.2

http://www.proceedings.spiiras.nw.ru/index.php/sp/article/view/16443/15371